全文获取类型
收费全文 | 15951篇 |
免费 | 1762篇 |
国内免费 | 212篇 |
专业分类
17925篇 |
出版年
2023年 | 73篇 |
2022年 | 135篇 |
2021年 | 275篇 |
2020年 | 229篇 |
2019年 | 255篇 |
2018年 | 304篇 |
2017年 | 286篇 |
2016年 | 433篇 |
2015年 | 606篇 |
2014年 | 681篇 |
2013年 | 793篇 |
2012年 | 931篇 |
2011年 | 909篇 |
2010年 | 572篇 |
2009年 | 569篇 |
2008年 | 723篇 |
2007年 | 714篇 |
2006年 | 638篇 |
2005年 | 557篇 |
2004年 | 509篇 |
2003年 | 463篇 |
2002年 | 424篇 |
2001年 | 1173篇 |
2000年 | 1005篇 |
1999年 | 759篇 |
1998年 | 251篇 |
1997年 | 266篇 |
1996年 | 205篇 |
1995年 | 181篇 |
1994年 | 172篇 |
1993年 | 118篇 |
1992年 | 379篇 |
1991年 | 336篇 |
1990年 | 290篇 |
1989年 | 231篇 |
1988年 | 205篇 |
1987年 | 147篇 |
1986年 | 149篇 |
1985年 | 114篇 |
1984年 | 68篇 |
1983年 | 72篇 |
1981年 | 32篇 |
1979年 | 39篇 |
1978年 | 32篇 |
1976年 | 43篇 |
1975年 | 41篇 |
1973年 | 42篇 |
1972年 | 52篇 |
1971年 | 46篇 |
1970年 | 34篇 |
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
81.
82.
83.
Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle 总被引:30,自引:0,他引:30
The alpha subunit of a voltage-sensitive sodium channel characteristic of denervated rat skeletal muscle was cloned and characterized. The cDNA encodes a 2018 amino acid protein (SkM2) that is homologous to other recently cloned sodium channels, including a tetrodotoxin (TTX)-sensitive sodium channel from rat skeletal muscle (SkM1). The SkM2 protein is no more homologous to SkM1 than to the rat brain sodium channels and differs notably from SkM1 in having a longer cytoplasmic loop joining domains 1 and 2. Steady-state mRNA levels for SkM1 and SkM2 are regulated differently during development and following denervation: the SkM2 mRNA level is highest in early development, when TTX-insensitive channels predominate, but declines rapidly with age as SkM1 mRNA increases; SkM2 mRNA is not detectable in normally innervated adult skeletal muscle but increases greater than 100-fold after denervation; rat cardiac muscle has abundant SkM2 mRNA but no detectable SkM1 message. These findings suggest that SkM2 is a TTX-insensitive sodium channel expressed in both skeletal and cardiac muscle. 相似文献
84.
Fong W. Lam Jenny Phillips Paul Landry Sri Magadi C. Wayne Smith Rolando E. Rumbaut Alan R. Burns 《PloS one》2015,10(3)
Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and neutrophil (PMN) recruitment after corneal abrasion is beneficial to epithelial wound healing, we wanted to determine if these cells play a role in regulating keratocyte repopulation after epithelial abrasion. A 2 mm diameter central epithelial region was removed from the corneas of C57BL/6 wildtype (WT), P-selectin deficient (P-sel-/-), and CD18 hypomorphic (CD18hypo) mice using the Algerbrush II. Corneas were studied at 6h intervals out to 48h post-injury to evaluate platelet and PMN cell numbers; additional corneas were studied at 1, 4, 14, and 28 days post injury to evaluate keratocyte numbers. In WT mice, epithelial abrasion induced a loss of anterior central keratocytes and keratocyte recovery was rapid and incomplete, reaching ~70% of uninjured baseline values by 4 days post-injury but no further improvement at 28 days post-injury. Consistent with a beneficial role for platelets and PMNs in wound healing, keratocyte recovery was significantly depressed at 4 days post-injury (~30% of uninjured baseline) in P-sel-/- mice, which are known to have impaired platelet and PMN recruitment after corneal abrasion. Passive transfer of platelets from WT, but not P-sel-/-, into P-sel-/- mice prior to injury restored anterior central keratocyte numbers at 4 days post-injury to P-sel-/- uninjured baseline levels. While PMN infiltration in injured CD18hypo mice was similar to injured WT mice, platelet recruitment was markedly decreased and anterior central keratocyte recovery was significantly reduced (~50% of baseline) at 4–28 days post-injury. Collectively, the data suggest platelets and platelet P-selectin are critical for efficient keratocyte recovery after corneal epithelial abrasion. 相似文献
85.
Fang Yuan Dana E. Tabor Richard K. Nelson Hongjiang Yuan Yijia Zhang Jenny Nuxoll Kimberly K. Bynoté Subodh M. Lele Dong Wang Karen A. Gould 《PloS one》2013,8(11)
We evaluated the ability of a macromolecular prodrug of dexamethasone (P-Dex) to treat lupus nephritis in (NZB × NZW)F1 mice. We also explored the mechanism underlying the anti-inflammatory effects of this prodrug. P-Dex eliminated albuminuria in most (NZB × NZW)F1 mice. Furthermore, P-Dex reduced the incidence of severe nephritis and extended lifespan in these mice. P-Dex treatment also prevented the development of lupus-associated hypertension and vasculitis. Although P-Dex did not reduce serum levels of anti-dsDNA antibodies or glomerular immune complexes, P-Dex reduced macrophage recruitment to the kidney and attenuated tubulointerstitial injury. In contrast to what was observed with free dexamethasone, P-Dex did not induce any deterioration of bone quality. However, P-Dex did lead to reduced peripheral white blood cell counts and adrenal gland atrophy. These results suggest that P-Dex is more effective and less toxic than free dexamethasone for the treatment of lupus nephritis in (NZB × NZW)F1 mice. Furthermore, the data suggest that P-Dex may treat nephritis by attenuating the renal inflammatory response to immune complexes, leading to decreased immune cell infiltration and diminished renal inflammation and injury. 相似文献
86.
Schwarzenbacher R von Delft F Jaroszewski L Abdubek P Ambing E Biorac T Brinen LS Canaves JM Cambell J Chiu HJ Dai X Deacon AM DiDonato M Elsliger MA Eshagi S Floyd R Godzik A Grittini C Grzechnik SK Hampton E Karlak C Klock HE Koesema E Kovarik JS Kreusch A Kuhn P Lesley SA Levin I McMullan D McPhillips TM Miller MD Morse A Moy K Ouyang J Page R Quijano K Robb A Spraggon G Stevens RC van den Bedem H Velasquez J Vincent J Wang X West B Wolf G Xu Q Hodgson KO Wooley J Wilson IA 《Proteins》2004,56(2):392-395
87.
Clinical application of free digital artery flap of the hand 总被引:1,自引:0,他引:1
88.
Part feeding at high-variant mixed-model assembly lines 总被引:1,自引:0,他引:1
Jenny Golz Rico Gujjula Hans-Otto Günther Stefan Rinderer Marcus Ziegler 《Flexible Services and Manufacturing Journal》2012,24(2):119-141
The part feeding problem at automotive assembly plants deals with the timely supply of parts to the designated stations at the assembly line. According to the just-in-time principle, buffer storages at the line are frequently refilled with parts retrieved from a central storage area. In the industrial application at hand, this is accomplished by means of an internal shuttle system which supplies the various stations with the needed parts based on a given assembly sequence. The main objective is to minimize the required number of shuttle drivers. To solve this in-house transportation problem, a heuristic solution procedure is developed which is based on the decomposition of the entire planning problem into two stages. First, transportation orders are derived from the given assembly sequence. In the second stage, these orders are assigned to tours of the shuttle system taking transportation capacity restrictions, due dates and tour scheduling constraints into account. Numerical results show that the proposed heuristic solves even large-sized problem instances in short computational time. Benchmark comparisons with Kanban systems reveal the superiority of the proposed predictive part feeding approach. 相似文献
89.
B Mettauer Q M Zhao E Epailly A Charloux E Lampert B Heitz-Naegelen F Piquard P E di Prampero J Lonsdorfer 《Journal of applied physiology》2000,88(4):1228-1238
Because the cardiocirculatory response of heart transplant recipients (HTR) to exercise is delayed, we hypothesized that their O(2) uptake (VO(2)) kinetics at the onset of subthreshold exercise are slowed because of an impaired early "cardiodynamic" phase 1, rather than an abnormal subsequent "metabolic" phase 2. Thus we compared the VO(2) kinetics in 10 HTR submitted to six identical 10-min square-wave exercises set at 75% (36 +/- 5 W) of the load at their ventilatory threshold (VT) to those of 10 controls (C) similarly exercising at the same absolute (40 W; C40W group) and relative load (67 +/- 14 W; C67W group). Time-averaged heart rate, breath-by-breath VO(2), and O(2) pulse (O(2)p) data yielded monoexponential time constants of the VO(2) (s) and O(2)p increase. Separating phase 1 and 2 data permitted assessment of the phase 1 duration and phase 2 VO(2) time constant (). The VO(2) time constant was higher in HTR (38.4 +/- 7.5) than in C40W (22.9 +/- 9.6; P < or = 0. 002) or C67W (30.8 +/- 8.2; P < or = 0.05), as was the O(2)p time constant, resulting from a lower phase 1 VO(2) increase (287 +/- 59 vs. 349 +/- 66 ml/min; P < or = 0.05), O(2)p increase (2.8 +/- 0.6 vs. 3.6 +/- 1.0 ml/beat; P < or = 0.0001), and a longer phase 1 duration (36.7 +/- 12.3 vs. 26.8 +/- 6.0 s; P < or = 0.05), whereas the was similar in HTR and C (31.4 +/- 9.6 vs. 29.9 +/- 5.6 s; P = 0.85). Thus the HTR have slower subthreshold VO(2) kinetics due to an abnormal phase 1, suggesting that the heart is unable to increase its output abruptly when exercise begins. We expected a faster in HTR because of their prolonged phase 1 duration. Because this was not the case, their muscular metabolism may also be impaired at the onset of subthreshold exercise. 相似文献
90.
Fragile X Syndrome is the most common form of inherited mental retardation. It is also known for having a substantial behavioral morbidity, including autistic features. In humans, Fragile X Syndrome is almost always caused by inactivation of the X-linked FMR1 gene. A single knockout mouse model, fmr1-tm1Cgr, exists. In this report we further characterize the cognitive and behavioral phenotype of the fmr1-tm1Cgr Fragile X mouse through the use of F1 hybrid mice derived from two inbred strains (FVB/NJ and C57BL/6J). Use of F1 hybrids allows focus on the effects of the fmr1-tm1Cgr allele with reduced influence from recessive alleles present in the parental inbred strains. We find that the cognitive phenotype of fmr1-tm1Cgr mice, including measures of working memory and learning set formation that are known to be seriously impacted in humans with Fragile X Syndrome, are essentially normal. Further testing of inbred strains supports this conclusion. Thus, any fmr1-tm1Cgr cognitive deficit is surprisingly mild or absent. There is, however, clear support presented for a robust audiogenic seizure phenotype in all strains tested, as well as increased entries into the center of an open field. Finally, a molecular examination of the fmr1-tm1Cgr mouse shows that, contrary to common belief, it is not a molecular null. Implications of this finding for interpretation of the phenotype are discussed. 相似文献