全文获取类型
收费全文 | 15951篇 |
免费 | 1762篇 |
国内免费 | 212篇 |
专业分类
17925篇 |
出版年
2023年 | 73篇 |
2022年 | 135篇 |
2021年 | 275篇 |
2020年 | 229篇 |
2019年 | 255篇 |
2018年 | 304篇 |
2017年 | 286篇 |
2016年 | 433篇 |
2015年 | 606篇 |
2014年 | 681篇 |
2013年 | 793篇 |
2012年 | 931篇 |
2011年 | 909篇 |
2010年 | 572篇 |
2009年 | 569篇 |
2008年 | 723篇 |
2007年 | 714篇 |
2006年 | 638篇 |
2005年 | 557篇 |
2004年 | 509篇 |
2003年 | 463篇 |
2002年 | 424篇 |
2001年 | 1173篇 |
2000年 | 1005篇 |
1999年 | 759篇 |
1998年 | 251篇 |
1997年 | 266篇 |
1996年 | 205篇 |
1995年 | 181篇 |
1994年 | 172篇 |
1993年 | 118篇 |
1992年 | 379篇 |
1991年 | 336篇 |
1990年 | 290篇 |
1989年 | 231篇 |
1988年 | 205篇 |
1987年 | 147篇 |
1986年 | 149篇 |
1985年 | 114篇 |
1984年 | 68篇 |
1983年 | 72篇 |
1981年 | 32篇 |
1979年 | 39篇 |
1978年 | 32篇 |
1976年 | 43篇 |
1975年 | 41篇 |
1973年 | 42篇 |
1972年 | 52篇 |
1971年 | 46篇 |
1970年 | 34篇 |
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
71.
72.
Function of Hsp70s such as DnaK of the Escherichia coli cytoplasm and Ssc1 of the mitochondrial matrix of Saccharomyces cerevisiae requires the nucleotide release factors, GrpE and Mge1, respectively. A loop, which protrudes from domain IA of the DnaK ATPase domain, is one of six sites of interaction revealed in the GrpE:DnaK co-crystal structure and has been implicated as a functionally important site in both DnaK and Ssc1. Alanine substitutions for the amino acids (Lys-108 and Arg-213 of Mge1) predicted to interact with the Hsp70 loop were analyzed. Mge1 having both substitutions was able to support growth in the absence of the essential wild-type protein. K108A/R213A Mge1 was able to stimulate nucleotide release from Ssc1 and function in refolding of denatured luciferase, albeit higher concentrations of mutant protein than wild-type protein were required. In vitro and in vivo assays using K108A/R213A Mge1 and Ssc1 indicated that the disruption of contact at this site destabilized the interaction between the two proteins. We propose that the direct interaction between the loop of Ssc1 and Mge1 is not required to effect nucleotide release but plays a role in stabilization of the Mge1-Ssc1 interaction. The robust growth of the K108A/R213A MGE1 mutant suggests that the interaction between Mge1 and Ssc1 is tighter than required for function in vivo. 相似文献
73.
74.
Autophagy is an intracellular degradation process for recycling macromolecules and organelles. It plays important roles in plant development and in response to nutritional demand, stress, and senescence. Organisms from yeast to plants contain many autophagy-associated genes (ATG). In this study, we found that a total of 33 ATG homologues exist in the rice [Oryza sativa L. (Os)] genome, which were classified into 13 ATG subfamilies. Six of them are alternatively spliced genes. Evolutional analysis showed that expansion of 10 OsATG homologues occurred via segmental duplication events and that the occurrence of these OsATG homologues within each subfamily was asynchronous. The Ka/Ks ratios suggested purifying selection for four duplicated OsATG homologues and positive selection for two. Calculating the dates of the duplication events indicated that all duplication events might have occurred after the origin of the grasses, from 21.43 to 66.77 million years ago. Semi-quantitative RT–PCR analysis and mining the digital expression database of rice showed that all 33 OsATG homologues could be detected in at least one cell type of the various tissues under normal or stress growth conditions, but their expression was tightly regulated. The 10 duplicated genes showed expression divergence. The expression of most OsATG homologues was regulated by at least one treatment, including hormones, abiotic and biotic stresses, and nutrient limitation. The identification of OsATG homologues showing constitutive expression or responses to environmental stimuli provides new insights for in-depth characterization of selected genes of importance in rice. 相似文献
75.
76.
Xiaokang Sun Jie Lv Fei Wang Chenyang Zhang Liangxiang Zhu Guangye Zhang Tongle Xu Zhenghui Luo Haoran Lin Xiaoping Ouyang Chunming Yang Chuluo Yang Gang Li Hanlin Hu 《Liver Transplantation》2024,14(3):2302731
Achieving high-performance in all-small-molecule organic solar cells (ASM-OSCs) significantly relies on precise nanoscale phase separation through domain size manipulation in the active layer. Nonetheless, for ASM-OSC systems, forging a clear connection between the tuning of domain size and the intricacies of phase separation proves to be a formidable challenge. This study investigates the intricate interplay between domain size adjustment and the creation of optimal phase separation morphology, crucial for ASM-OSCs’ performance. It is demonstrated that exceptional phase separation in ASM-OSCs’ active layer is achieved by meticulously controlling the continuity and uniformity of domains via re-packing process. A series of halogen-substituted solvents (Fluorobenzene, Chlorobenzene, Bromobenzene, and Iodobenzene) is adopted to tune the re-packing kinetics, the ASM-OSCs treated with CB exhibited an impressive 16.2% power conversion efficiency (PCE). The PCE enhancement can be attributed to the gradual crystallization process, promoting a smoothly interconnected and uniformly distributed domain size. This, in turn, leads to a favorable phase separation morphology, enhanced charge transfer, extended carrier lifetime, and consequently, reduced recombination of free charges. The findings emphasize the pivotal role of re-packing kinetics in achieving optimal phase separation in ASM-OSCs, offering valuable insights for designing high-performance ASM-OSCs fabrication strategies. 相似文献
77.
Tong L Lin Q Wong WK Ali A Lim D Sung WL Hew CL Yang DS 《Protein expression and purification》2000,18(2):175-181
HPLC6 is the major component of liver-type antifreeze polypeptides (AFPs) from the winter flounder, Pleuronectes americanus. To facilitate mutagenesis studies of this protein, a gene encoding the 37-amino acid mature polypeptide was chemically synthesized and cloned into the Tac cassette immediately after the bacterial ompA leader sequence for direct excretion of the AFP into the culture medium. Escherichia coli transformant with the construct placIQpar8AF was cultured in M9 medium. The recombinant AFP (rAFP) was detected by a competitive enzyme-linked immunosorbent assay (ELISA). After IPTG induction, a biologically active rAFP was expressed. The majority of the rAFP was excreted into the culture medium with only trace amounts trapped in the periplasmic space and cytoplasm. After 18 h of induction, the accumulated rAFP in the culture medium amounted to about 16 mg/L. The excreted AFP was purified from the culture medium by a single-step reverse-phase HPLC. Mass spectrometric and amino acid composition analyses confirmed the identity of the purified product. The rAFP, which lacked amidation at the C-terminal, was about 70% active when compared to the amidated wild-type protein, thus confirming the importance of C-terminal cap structure in protein stability and function. 相似文献
78.
79.
Brassinolide (BL) alleviates salt injury in cotton seedlings; however, little is known about the molecular mechanisms of this response. In this study, digital gene expression analysis was performed to better understand the regulatory pathways of BL in NaCl-stressed cotton (Gossypium hirsutum L.). Compared with control plants (CK), a total of 1 162 and 7 659 differentially expressed genes (DEGs) were detected in the leaves and roots of NaCl-treated plants, respectively. Most of the DEGs in NaCl-treated plants, compared to CK, were regulated by BL. Moreover, expression patterns of DEGs in BL+NaCl treated plants were similar to those in CK plants; however, the responses of DEGs in the leaves and roots of NaCl-treated plants to BL differed. In the roots, BL-regulated DEGs were involved in protein biosynthesis, whereas in the leaves, BL promoted photosynthesis in NaCl-stressed cotton. BL treatment also significantly increased the overall biomass, chlorophyll a + b content in leaves, and the protein content in roots in NaCl-stressed cotton. The downregulation of stress-responsive genes in BL+NaCl-stressed leaves was also found. These results suggest that BL can alleviate NaCl injury in cotton plants. 相似文献