首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2753篇
  免费   225篇
  国内免费   3篇
  2981篇
  2023年   16篇
  2022年   27篇
  2021年   59篇
  2020年   47篇
  2019年   41篇
  2018年   54篇
  2017年   54篇
  2016年   85篇
  2015年   158篇
  2014年   162篇
  2013年   214篇
  2012年   258篇
  2011年   233篇
  2010年   133篇
  2009年   127篇
  2008年   180篇
  2007年   197篇
  2006年   178篇
  2005年   154篇
  2004年   118篇
  2003年   132篇
  2002年   117篇
  2001年   23篇
  2000年   13篇
  1999年   26篇
  1998年   18篇
  1997年   18篇
  1996年   10篇
  1995年   17篇
  1994年   9篇
  1993年   6篇
  1992年   9篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1988年   5篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1978年   2篇
  1976年   5篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1968年   2篇
排序方式: 共有2981条查询结果,搜索用时 15 毫秒
71.
We report on the modulation of phase morphology, plasticization properties, and thermal stability of films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer (PLLA-co-PCL) with additions of low molecular weight compounds, namely, triethyl citrate ester, diethyl phthalate, diepoxy polyether (poly(propylene glycol) diglycidyl ether), and with epoxidized soybean oil (ESO). The PLLA-co-PCL/polyether films showed significant stability against thermal depolymerization, high film flexibility, and good plasticizing properties, probably due to cross-linking and chain branching formation between diepoxy groups with both the end carboxyl and hydroxyl groups of the PLLA copolymer (initially present or generated during the degradation process) to produce primary ester and ether bonds, respectively. Diethyl phthalate and triethyl citrate ester were found to be efficient plasticizers for PLLA copolymer in terms of glass transition and mechanical properties, but the more water-soluble plasticizer triethyl citrate induced a dramatic loss in the molecular weight of the copolymer. Although ESO cannot play the role of a plasticizer, it substantially stabilizes and retards thermal depolymerization of the PLLA copolymer matrix, possibly because of a reaction between epoxy groups with the end carboxyl and hydroxyl groups of the PLLA copolymer. The presence of ESO in PLLA-co-PCL/ESO/triethyl citrate blends enhanced the compatibility and miscibility of the plasticizer with the PLLA copolymer matrix, considerably improved the mechanical properties (elongation at break), and substantially stabilized the copolymer against thermal depolymerization. It seems likely that the epoxy groups interact not only with the end hydroxyl and carboxyl group of the copolymer but as well with the hydroxyl group of triethyl citrate plasticizer to produce a new ether bond (C-O-C) as the cross-linking unit. On the other hand, for PLLA-co-PCL/ESO/polyether blends, (80/10/10) epoxidized oil distorts the compactness of the blend by diminishing the proposed entanglements between carboxyl, hydroxyl, and diepoxy groups of polyether and reduces the high elongation properties otherwise observed in the PLLA-co-PCL/polyether films. The multicomponent approach toward modulating poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer films using epoxy compounds and plasticizers and the insight into the nature of various PLLA matrixes presented here offer advantages to a broad engineering of PLLA copolymer films having desirable physical properties and multiphase behavior for efficient uses in future technical applications.  相似文献   
72.
73.
Recent studies have demonstrated high levels of genotypic and phenotypic variation in populations of parasites, even within individual hosts. Several genetic, immunological and epidemiological mechanisms have been postulated as promoters of such variation, but little empirical work has addressed the role of host ecology. A nucleopolyhedrovirus that attacks larvae of the pine beauty moth, Panolis flammea , exists as a complex mixture of genotypes within individual host larvae. We demonstrate that the food plant species eaten by the host (Scots pine vs. lodgepole pine) differentially affects the pathogenicity and productivity of two virus genotypes originally purified from a single host individual. We hypothesize that such food plant-mediated differential selection will promote genotypic variation between baculovirus populations, and that subsequent remixing of virus genotypes could maintain genotypic variation within individual hosts. Our results provide a tritrophic explanation for the genotypic and phenotypic complexity of host–parasite interactions with complex ecologies.  相似文献   
74.
p53 mediates DNA damage‐induced cell‐cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR‐S6K1 through p38α MAPK. The activated S6K1 forms a tighter complex with Mdm2, inhibits Mdm2‐mediated p53 ubiquitination, and promotes p53 induction, in addition to phosphorylating Mdm2 on S163. Deactivation of mTOR‐S6K1 signalling leads to Mdm2 nuclear translocation, which is facilitated by S163 phosphorylation, a reduction in p53 induction, and an alteration in p53‐dependent cell death. These findings thus establish mTOR‐S6K1 as a novel regulator of p53 in DNA damage response and likely in tumorigenesis. S6K1–Mdm2 interaction presents a route for cells to incorporate the metabolic/energy cues into DNA damage response and links the aging‐controlling Mdm2–p53 and mTOR‐S6K pathways.  相似文献   
75.
76.
PTEN (phosphatase and tensin homologue deleted on chromosome TEN) is the major negative regulator of phosphatidylinositol 3-kinase signaling and has cell-specific functions including tumor suppression. Nuclear localization of PTEN is vital for tumor suppression; however, outside of cancer, the molecular and physiological events driving PTEN nuclear entry are unknown. In this paper, we demonstrate that cytoplasmic Pten was translocated into the nuclei of neurons after cerebral ischemia in mice. Critically, this transport event was dependent on a surge in the Nedd4 family-interacting protein 1 (Ndfip1), as neurons in Ndfip1-deficient mice failed to import Pten. Ndfip1 binds to Pten, resulting in enhanced ubiquitination by Nedd4 E3 ubiquitin ligases. In vitro, Ndfip1 overexpression increased the rate of Pten nuclear import detected by photobleaching experiments, whereas Ndfip1(-/-) fibroblasts showed negligible transport rates. In vivo, Ndfip1 mutant mice suffered larger infarct sizes associated with suppressed phosphorylated Akt activation. Our findings provide the first physiological example of when and why transient shuttling of nuclear Pten occurs and how this process is critical for neuron survival.  相似文献   
77.
Agrotis segetum nuclear polyhedrosis virus (AsNPV) and granulosis virus (AsGV), propagated in laboratory cultures of A. segetum in England and A. ipsilon in Spain, respectively, were applied to plots of maize plants at the one‐ to four‐leaf stage of growth. Plots were arranged in a 6 x 6 Latin square design and infested with second‐instar A. segetum larvae (the common cutworm). Each virus was applied in separate treatments by two application methods; as an aqueous spray containing 0.1% Agral as a wetting agent, and as a bran bait. The NPV was applied at a rate of 4 X 1012 polyhedra/ha, and the GV at 4 X 1013 granules/ha. Soil and plants were sampled for larvae on three occasions following virus treatment: 24 h, 4 days and 11 days. The larvae were reared on diet in the laboratory, until death or pupation, to examine the rate and level of viral infection. Infection data showed 87.5% and 91% NPV infection and 12.5% and 55% GV infection in spray and bait treatments, respectively, in larvae sampled 24 h after treatment. In larvae sampled 4 days after treatment, the results were 78% and 100% NPV infection, and 13% and 6% GV infection. A total of only six larvae were retrieved on day 11. In both treatments larvae infected with AsNPV died significantly more rapidly and at an earlier instar than those infected with AsGV, indicating that AsNPV appears to have better potential as a control agent for A. segetum.  相似文献   
78.
Spontaneous antenatal hypoxia is associated with high risk of adverse outcomes, however, there is little information on neural adaptation to labor-like insults. Chronically instrumented near-term sheep fetuses (125 ± 3 days, mean ± SEM) with baseline PaO2 < 17 mmHg (hypoxic group: n = 8) or > 17 mmHg (normoxic group: n = 8) received 1-minute umbilical cord occlusions repeated every 5 minutes for a total of 4 hours, or until mean arterial blood pressure (MAP) fell below 20 mmHg for two successive occlusions. 5/8 fetuses with pre-existing hypoxia were unable to complete the full series of occlusions (vs. 0/8 normoxic fetuses). Pre-existing hypoxia was associated with progressive metabolic acidosis (nadir: pH 7.08 ± 0.04 vs. 7.33 ± 0.02, p<0.01), hypotension during occlusions (nadir: 24.7 ± 1.8 vs. 51.4 ± 3.2 mmHg, p<0.01), lower carotid blood flow during occlusions (23.6 ± 6.1 vs. 63.0 ± 4.8 mL/min, p<0.01), greater suppression of EEG activity during, between, and after occlusions (p<0.01) and slower resolution of cortical impedance, an index of cytotoxic edema. No normoxic fetuses, but 4/8 hypoxic fetuses developed seizures 148 ± 45 minutes after the start of occlusions, with a seizure burden of 26 ± 6 sec during the inter-occlusion period, and 15.1 ± 3.4 min/h in the first 6 hours of recovery. In conclusion, in fetuses with pre-existing hypoxia, repeated brief asphyxia at a rate consistent with early labor is associated with hypotension, cephalic hypoperfusion, greater EEG suppression, inter-occlusion seizures, and more sustained cytotoxic edema, consistent with early onset of neural injury.  相似文献   
79.
Fatty acids have distinct cellular effects related to inflammation and insulin sensitivity. Dietary saturated fat activates toll-like receptor 4, which in turn can lead to chronic inflammation, insulin resistance, and adipose tissue macrophage infiltration. Conversely, n3 fatty acids are generally antiinflammatory and promote insulin sensitivity, in part via peroxisome proliferator-activated receptor γ. Ossabaw swine are a useful biomedical model of obesity. We fed Ossabaw pigs either a low-fat control diet or a diet containing high-fat palm oil with or without additional n3 fatty acids for 30 wk to investigate the effect of saturated fats and n3 fatty acids on obesity-linked inflammatory markers. The diet did not influence the inflammatory markers C-reactive protein, TNFα, IL6, or IL12. In addition, n3 fatty acids attenuated the increase in inflammatory adipose tissue CD16CD14+ macrophages induced by high palm oil. High-fat diets with and without n3 fatty acids both induced hyperglycemia without hyperinsulinemia. The high-fat only group but not the high-fat group with n3 fatty acids showed reduced insulin sensitivity in response to insulin challenge. This effect was not mediated by decreased phosphorylation of protein kinase B. Therefore, in obese Ossabaw swine, n3 fatty acids partially attenuate insulin resistance but only marginally change inflammatory status and macrophage phenotype in adipose tissue.Abbreviations: AMPKα, AMP-activated protein kinase α, CRP, C-reactive protein, DHA, docosahexanoic acid, EPA, eicosapentanoic acid, HFP, high-fat palm-oil diet, HFPn3, high-fat palm-oil diet supplemented with n3 fatty acids, HOMA-IR, homeostasis model of assessment–, insulin resistance, LFC, low-fat control diet, PKB, protein kinase B, PUFA, polyunsaturated fatty acidsObesity is accompanied by chronic inflammation in adipose tissue; increased circulating concentrations of TNFα, IL6, and C-reactive protein (CRP); and decreased concentrations of adiponectin.2 This chronic inflammation links obesity and the development of insulin resistance.39 Dietary saturated fatty acids promote obesity in part through the induction of inflammation via activation of toll-like receptor 4 (the innate immune receptor for LPS).28 The absence of functional tlr4 in mice reduces circulating proinflammatory cytokine concentrations and decreases macrophage infiltration into adipose tissue during high-fat diet-induced obesity.8,28,32 Furthermore, in 3T3 L1 mouse adipocytes, palmitate activates NFκB, protein kinase C, and mitogen-activated protein kinase, all of which increase the production of inflammatory cytokines.1For people who consume a diet high in saturated fat, a major determinant of health is the ratio of omega-6 to omega-3 fatty acids (that is, n6:n3) that is consumed.5,6 Unlike saturated fatty acids, the n3 polyunsaturated fatty acids (PUFA) eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) exert predominantly antiinflammatory effects, as is evident in that DHA antagonizes NFκB activation by palmitate in 3T3 L1 adipocytes.1 In mice, EPA prevents or reverses hyperinsulinemia, hyperglycemia, and increased circulating monocyte chemotatic protein 116 and decreases infiltration of adipose tissue with macrophages.30 Moreover, n3 PUFA alleviate the decline in serum adiponectin that is associated with obesity,12,15,30 and EPA decreases serum CRP in diabetic patients.26Physiologic differences between rodents and humans underscore the need for comparative models in biomedical research, and the pig is emerging rapidly as a model for studies of energy metabolism and obesity. Like humans, pigs are natural omnivores, rely on apolipoprotein B100 to shuttle cholesterol in the LDL fraction, and have minimal brown fat retention postnatally. Furthermore, adipose depots in pigs are of sufficient size that multiple assays can be done on adipocytes or stromal vascular cells without pooling across depots or animals. Although Ossabaw swine have been used as models for metabolic syndrome, cardiovascular disease, coronary artery disease, and steatohepatisis,11,20,24 little is known about adipose inflammation in these animals. Consequently, we sought to characterize obesity-linked inflammatory markers in the adipose tissue of this novel model and to test the hypothesis that adding n3 PUFA to a diet high in saturated fat attenuates chronic inflammation, protects against diet-induced insulin resistance, and alters phenotypic changes in adipose tissue macrophages.  相似文献   
80.
The NLR (nucleotide-binding domain leucine-rich repeat containing) proteins serve as regulators of inflammatory signaling pathways. NLRX1, a mitochondria-localized NLR protein, has been previously shown to negatively regulate inflammatory cytokine production activated via the MAVS-DDX58 (RIG-I) pathway. The literature also indicates that DDX58 has a negative impact upon autophagy. Consistent with the inhibitory role of NLRX1 on DDX58, our recent study indicates a role of NLRX1 in augmenting virus-induced autophagy. This effect is through its interaction with another mitochondrial protein TUFM (Tu translation elongation factor, mitochondrial, also known as EF-TuMT, COXPD4, and P43). TUFM also reduces DDX58-activated cytokines but augments autophagy. Additionally it interacts with ATG12–ATG5-ATG16L1 to form a molecular complex that modulates autophagy. The work shows that both NLRX1 and TUFM work in concert to reduce cytokine response and augment autophagy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号