首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15603篇
  免费   1540篇
  国内免费   2篇
  17145篇
  2024年   16篇
  2023年   97篇
  2022年   217篇
  2021年   375篇
  2020年   233篇
  2019年   272篇
  2018年   324篇
  2017年   296篇
  2016年   509篇
  2015年   957篇
  2014年   924篇
  2013年   1128篇
  2012年   1470篇
  2011年   1404篇
  2010年   896篇
  2009年   768篇
  2008年   996篇
  2007年   993篇
  2006年   948篇
  2005年   905篇
  2004年   862篇
  2003年   739篇
  2002年   679篇
  2001年   114篇
  2000年   73篇
  1999年   114篇
  1998年   135篇
  1997年   76篇
  1996年   72篇
  1995年   53篇
  1994年   54篇
  1993年   53篇
  1992年   36篇
  1991年   45篇
  1990年   30篇
  1989年   16篇
  1988年   31篇
  1987年   15篇
  1986年   16篇
  1985年   18篇
  1984年   14篇
  1983年   17篇
  1982年   20篇
  1981年   12篇
  1980年   16篇
  1979年   7篇
  1978年   12篇
  1977年   14篇
  1976年   7篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
While many cell types express receptors for the Fc domain of IgG (FcγR), only primate polymorphonuclear neutrophils (PMN) express an FcγR linked to the membrane via a glycan phosphoinositol (GPI) anchor. Previous studies have demonstrated that this GPI-linked FcγR (FcγRIIIB) cooperates with the transmembrane FcγR (FcγRIIA) to mediate many of the functional effects of immune complex binding. To determine the role of the GPI anchor in Fcγ receptor synergy, we have developed a model system in Jurkat T cells, which lack endogenously expressed Fcγ receptors. Jurkat T cells were stably transfected with cDNA encoding FcγRIIA and/or FcγRIIIB. Cocrosslinking the two receptors produced a synergistic rise in intracytoplasmic calcium ([Ca2+]i) to levels not reached by stimulation of either FcγRIIA or FcγRIIIB alone. Synergy was achieved by prolonged entry of extracellular Ca2+. Cocrosslinking FcγRIIA with CD59 or CD48, two other GPI-linked proteins on Jurkat T cells also led to a synergistic [Ca2+]i rise, as did crosslinking CD59 with FcγRIIA on PMN, suggesting that interactions between the extracellular domains of the two Fcγ receptors are not required for synergy. Replacement of the GPI anchor of FcγRIIIB with a transmembrane anchor abolished synergy. In addition, tyrosine to phenylalanine substitutions in the immunoreceptor tyrosine-based activation motif (ITAM) of the FcγRIIA cytoplasmic tail abolished synergy. While the ITAM of FcγRIIA was required for the increase in [Ca2+]i, tyrosine phosphorylation of crosslinked FcγRIIA was diminished when cocrosslinked with FcγRIIIB. These data demonstrate that FcγRIIA association with GPI-linked proteins facilitates FcγR signal transduction and suggest that this may be a physiologically significant role for the unusual GPI-anchored FcγR of human PMN.  相似文献   
72.
73.
The proteasome (multicatalytic proteinase complex) is a large multimeric complex which is found in the nucleus and cytoplasm of eukaryotic cells. It plays a major role in both ubiquitin-dependent and ubiquitin-independent nonlysosomal pathways of protein degradation. Proteasome subunits are encoded by members of the same gene family and can be divided into two groups based on their similarity to the and subunits of the simpler proteasome isolated fromThermoplasma acidophilum. Proteasomes have a cylindrical structure composed of four rings of seven subunits. The 26S form of the proteasome, which is responsible for ubiquitin-dependent proteolysis, contains additional regulatory complexes. Eukaryotic proteasomes have multiple catalytic activities which are catalysed at distinct sites. Since proteasomes are unrelated to other known proteases, there are no clues as to which are the catalytic components from sequence alignments. It has been assumed from studies with yeast mutants that -type subunits play a catalytic role. Using a radiolabelled peptidyl chloromethane inhibitor of rat liver proteasomes we have directly identified RC7 as a catalytic component. Interestingly, mutants in Prel, the yeast homologue of RC7, have already been reported to have defective chymotrypsin-like activity. These results taken together confirm a direct catalytic role for these -type subunits. Proteasome activities are sensitive to conformational changes and there are several ways in which proteasome function may be modulatedin vivo. Our recent studies have shown that in animal cells at least two proteasome subunits can undergo phosphorylation, the level of which is likely to be important for determining proteasome localization, activity or ability to form larger complexes. In addition, we have isolated two isoforms of the 26S proteinase.  相似文献   
74.
A close association between the HIV surface protein gp120 and the CD4 T cell receptor initiates the viral multiplication cycle. A 15 amino acid peptide (LAV) within the CD4 binding domain of gp 120 has been shown to retain receptor binding ability. The structural behavior of the LAV peptide has been studied by CD and NMR methods in aqueous solution and upon addition of trifluoroethanol (TFE) to emulate the relatively apolar conditions at the membrane bound receptor. Previous work has shown that the LAV peptide folds into a β-pleated structure in more polar buffer/TFE mixtures, while a concerted structural change can be observed at a concentration of 60% TFE (v/v). This abrupt, cooperative refolding from a regular β-sheet to a helical secondary structure is known as “switch” behavior. Former CD experiments with LAV sequence variants have supported the assumption that four amino acids at the N-terminus (LPCR) are indispensable for the “switch.” The tetrad has a strong β-turn forming potential. The suggestion has been formulated that the tetrad can act as a nucleation site governing the refolding. The present NMR study of the LAV peptide in TFE gives evidence for a 310-helix suggesting that the tetrad adopts a type III β-turn and promotes the formation of a similar bend in the next overlapping tetrad until the sequence is restructured into a 310-helix at a critical polarity favoring intrachain hydrogen bonds. © 1995 Wiley-Liss, Inc.  相似文献   
75.
76.
Somatic cell genetic mapping of marsupial and monotreme species will greatly extend the power of comparative gene mapping to detect ancient mammalian gene arrangements. The use of eutherian-marsupial cell hybrids for such mapping is complicated by the frequent retention of deleted and rearranged marsupial chromosomes. We used staining techniques, involving the fluorochromes Hoechst 33258 and chromomycin A3, to facilitate rapid and unequivocal identification of marsupial chromosomes and chromosome segments and to make chromosome assignment and regional localization of marsupial genes possible. Chromosome segregation in rodent-macropod hybrids was consistent with preferential loss of the marsupial complement. The extent of loss was very variable. Some hybrids retained 30% of the marsupial complement; some retained small centric fragments; and some, no cytologically identifiable marsupial material. We examined the chromosomes and gene products of a number of rodent-grey kangaroo Macropus giganteus hybrids, and have assigned the genes Pgk-A (phosphoglycerate kinase-A), Hpt (Hypoxanthine phosphoribosyl transferase), and Gpd (Glucose-6-phosphate dehydrogenase) to the long arm of the kangaroo X chromosome, and provisionally established the gene order Pgk-A -Hpt -Gpd.  相似文献   
77.
Deletion of the Penicillin-Binding Protein 6 Gene of Escherichia coli   总被引:18,自引:11,他引:7       下载免费PDF全文
A strain of Escherichia coli with a deletion of the penicillin-binding protein 6 gene (dacC) has been constructed. The properties of this strain establish that the complete lack of penicillin-binding protein 6 has no marked effect on the growth of E. coli.  相似文献   
78.
Summary A maternal de novo reciprocal translocation between the short arms of chromosomes 9 and 13 is reported. Using C-, Q- or G-banding, it was not possible to determine the precise breakpoint on 13, but a combination of silver staining and in situ hybridisation was used to do so on the two chromosomes, and it was demonstrated that the break on chromosome 13 had occurred within the NOR.  相似文献   
79.
Identity at the major histocompatibility complex (MHC) was essential for successful transfer of delayed type hypersensitivity (DTH) in mice. The regions of the MHC involved differed according to the antigen used for sensitization. In the case of fowl gamma globulin (FGG), identity atI-A was necessary, whereas with dinitrofluorobenzene (DNFB), identity at theK, I, orD region was sufficient. These different genetic constraints probably reflect differences in the mechanisms by which antigens are presented to T lymphocytes. Cells from sensitized (CBA×C57BL)F1 mice transferred DTH to FGG into parental-strain mice, but transfer was more effective in C57BL than in CBA with the same cell dose. This phenomenon is governed by the MHC, since there was better transfer intoH-2 b than intoH-2 k mice, regardless of their backgrounds. It may reflect the activity of an Ir gene-dependent process. Cells of one genotype (e.g., CBA), sensitized in chimeric mice derived from two MHC-incompatible strains (CBAC57BL), transferred DTH to both strains. These results do not support the notion that the genetic constraint observed in DTH transfer may be a result of the necessity for sensitized T and stimulator cells to match an identical MHC-coded cell interaction molecule. Rather, they favor the hypothesis that T cells recognize antigen, not as a naked determinant, but in close association with products of genes of the MHC.  相似文献   
80.
The isolated intestinal mucosa of the flounder, Pseudopleuronectes americanus, when bathed in a 20 mM HCO3-Ringer's solution bubbled with 1% CO2 in O2, generated a serosa-negative PD and, when short-circuited, absorbed Cl at almost 3 times the rate of Na. Reducing HCO3 to 5 mM decreased the net Cl flux by more than 60%. The following results suggest that, despite the PD, Na and Cl transport processes are nonelectrically coupled: replacing all Na with choline abolished both the PD and net Cl flux; replacing all Cl with SO4 and mannitol abolished the PD and the net Na flux; and adding ouabain (to 0.5 mM) abolished the PD and the net Cl flux. Nearly all of the unidirectional serosa-to-mucosa Cl flux (JClsm) seemed to be paracellular since it varied with PD and Cl concentration in a manner consistent with simple diffusion. JClsm was only about one-fourth of JNasm, suggesting that the paracellular pathway is highly cation-selective. The data can be explained by the following model: (i) Na and Cl uptake across the brush border are coupled 1 : 1; Na is pumped into the lateral space and Cl follows passively, elevating the salt concentration there; (ii) the tight junction is permeable to Na but relatively impermeable to Cl; and (iii) resistance to Na diffusion is greater in the lateral space (considered in its entirety) than in the tight junction. If these assumptions are correct, the serosa-negative transmural PD is due mainly to a salt diffusion potential across the tight junction and, under short-circuit condition, most of the Na pumped into the lateral space diffuses back into the luminal solution, whereas most of the Cl enters the serosal solution. Morphological features of the epithelium support this interpretation: the cells are unusually long (60 micrometer); there is little distension of the apical 12 micrometer of the lateral space during active fluid absorption; and distension distal to this region is intermittently constricted by desmosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号