首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15591篇
  免费   1532篇
  国内免费   2篇
  17125篇
  2024年   16篇
  2023年   97篇
  2022年   217篇
  2021年   375篇
  2020年   233篇
  2019年   274篇
  2018年   324篇
  2017年   294篇
  2016年   506篇
  2015年   954篇
  2014年   923篇
  2013年   1129篇
  2012年   1469篇
  2011年   1403篇
  2010年   894篇
  2009年   768篇
  2008年   995篇
  2007年   993篇
  2006年   946篇
  2005年   903篇
  2004年   859篇
  2003年   737篇
  2002年   680篇
  2001年   113篇
  2000年   70篇
  1999年   113篇
  1998年   135篇
  1997年   77篇
  1996年   71篇
  1995年   53篇
  1994年   56篇
  1993年   52篇
  1992年   37篇
  1991年   46篇
  1990年   32篇
  1989年   18篇
  1988年   31篇
  1987年   15篇
  1986年   16篇
  1985年   18篇
  1984年   14篇
  1983年   17篇
  1982年   20篇
  1981年   12篇
  1980年   16篇
  1979年   7篇
  1978年   11篇
  1977年   14篇
  1976年   8篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Huh SH  Jones J  Warchol ME  Ornitz DM 《PLoS biology》2012,10(1):e1001231
A large proportion of age-related hearing loss is caused by loss or damage to outer hair cells in the organ of Corti. The organ of Corti is the mechanosensory transducing apparatus in the inner ear and is composed of inner hair cells, outer hair cells, and highly specialized supporting cells. The mechanisms that regulate differentiation of inner and outer hair cells are not known. Here we report that fibroblast growth factor 20 (FGF20) is required for differentiation of cells in the lateral cochlear compartment (outer hair and supporting cells) within the organ of Corti during a specific developmental time. In the absence of FGF20, mice are deaf and lateral compartment cells remain undifferentiated, postmitotic, and unresponsive to Notch-dependent lateral inhibition. These studies identify developmentally distinct medial (inner hair and supporting cells) and lateral compartments in the developing organ of Corti. The viability and hearing loss in Fgf20 knockout mice suggest that FGF20 may also be a deafness-associated gene in humans.  相似文献   
72.
Phodopus campbelli has an extensive paternal behavior repertoire whereas the closely-related Phodopus sungorus is not paternally responsive to a displaced pup. For the first time in a naturally paternal mammal, male estradiol and progesterone were determined during two critical phases: (1) the transition from sexually naive male to paired, expectant father that occurs in the absence of stimuli from pups (sexually naive males, paired males on G8, G12, G15, or G17 of the 18-day gestation) and (2) after pup stimuli became available to the males (paired males on days L1, L3, L5, or L12 of pup development). Hormone concentrations in naive males and between G17 and L1 (as stimuli from the birth and the pups became available to males) were also compared. Paternal responsiveness was tested on L3-L5 and confirmed species differences. Hormone concentrations in naive males were similar in the two species and males of both species had estradiol concentrations as high as fertile adult females. However, in direct contrast to predictions, estradiol concentrations were stable in P. campbelli males but increased before the birth, fell across the birth, and increased over pup development in P. sungorus males. Progesterone concentrations in P. campbelli males increased from G17 to L1 whereas a decrease had been predicted. Testosterone dynamics were consistent with previous studies. Either hormonal facilitation of paternal behavior is a hyper-variable trait that has evolved differently in different species, or, more probably, peripheral hormone concentrations are inadequate to explain the role of sex steroid hormones in paternal behavior.  相似文献   
73.
74.
75.
Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus.  相似文献   
76.
77.
Summary Both seismic and auditory signals were tested for their propagation characteristics in a field study of the Cape mole-rat (Georychus capensis), a subterranean rodent in the family Bathyergidae. This solitary animal is entirely fossorial and apparently communicates with its conspecifics by alternately drumming its hind legs on the burrow floor. Signal production in this species is sexually dimorphic, and mate attraction is likely mediated primarily by seismic signalling between individuals in neighboring burrows. Measurements within, and at various distances away from, natural burrows suggest that seismic signals propagate at least an order of magnitude better than auditory signals. Moreover, using a mechanical thumper which could be triggered from a tape recording of the mole-rat's seismic signals, we established that the vertically-polarized surface wave (Rayleigh wave) propagates with less attenuation than either of the two horizontally-polarized waves. Thus, we tentatively hypothesize that Rayleigh waves subserve intraspecific communication in this species.Abbreviations PPM pulses per min - SB simulated burrow - SD standard deviation - SPL sound pressure level  相似文献   
78.
ATP-dependent chromatin-remodeling complexes contribute to the proper temporal and spatial patterns of gene expression in mammalian embryos and therefore play important roles in a number of developmental processes. SWI/SNF-like chromatin-remodeling complexes use one of two different ATPases as their catalytic subunit: brahma (BRM, also known as SMARCA2) and brahma-related gene 1 (BRG1, also known as SMARCA4). We have conditionally deleted a floxed Brg1 allele with a Tie2-Cre transgene, which is expressed in developing hematopoietic and endothelial cells. Brg1(fl/fl):Tie2-Cre(+) embryos die at midgestation from anemia, as mutant primitive erythrocytes fail to transcribe embryonic alpha- and beta-globins, and subsequently undergo apoptosis. Additionally, vascular remodeling of the extraembryonic yolk sac is abnormal in Brg1(fl/fl):Tie2-Cre(+) embryos. Importantly, Brm deficiency does not exacerbate the erythropoietic or vascular abnormalities found in Brg1(fl/fl):Tie2-Cre(+) embryos, implying that Brg1-containing SWI/SNF-like complexes, rather than Brm-containing complexes, play a crucial role in primitive erythropoiesis and in early vascular development.  相似文献   
79.
80.
Exercise training improves vascular function in subjects with cardiovascular disease and risk factors, but there is mounting evidence these vascular adaptations may be vessel bed specific. We have therefore examined the hypothesis that exercise-induced improvements in conduit vessel function are related to changes in resistance vessel function. Endothelium-dependent and -independent conduit vessel function were assessed by using wall-tracking of high-resolution brachial artery ultrasound images of the response to flow-mediated dilation (FMD) and nitroglycerine [glyceryl trinitrate (GTN)] administration. Resistance vessel endothelium-dependent and -independent function were assessed using intrabrachial administration of acetylcholine (ACh) and nitroprusside (SNP). Randomized crossover studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic (n = 10), treated hypercholesterolemic (n = 10), coronary artery disease (n = 8), and Type 2 diabetic subjects (n = 15). Exercise training significantly enhanced responses to ACh (P < 0.05) and FMD (P < 0.0001). There were no significant changes in either SNP or GTN responses. The correlation between ACh and FMD responses at entry was not significant (r = 0.186; P = 0.231), and training-induced changes in the ACh did not correlate with those in FMD (r = -0.022; P = 0.890). Similarly, no correlation was evident between the SNP and GTN responses at entry (r = -0.010; P = 0.951) or between changes in these variables with training (r = -0.211; P = 0.191). We conclude that, although short-term exercise training improves endothelium-dependent nitric oxide-mediated vascular function in both conduit and resistance vessels, the magnitude of these improvements are unrelated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号