首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15628篇
  免费   1543篇
  国内免费   2篇
  2024年   12篇
  2023年   86篇
  2022年   214篇
  2021年   377篇
  2020年   233篇
  2019年   272篇
  2018年   326篇
  2017年   296篇
  2016年   507篇
  2015年   955篇
  2014年   924篇
  2013年   1131篇
  2012年   1468篇
  2011年   1405篇
  2010年   895篇
  2009年   769篇
  2008年   1000篇
  2007年   995篇
  2006年   949篇
  2005年   904篇
  2004年   860篇
  2003年   740篇
  2002年   685篇
  2001年   116篇
  2000年   70篇
  1999年   117篇
  1998年   136篇
  1997年   77篇
  1996年   73篇
  1995年   55篇
  1994年   56篇
  1993年   52篇
  1992年   38篇
  1991年   47篇
  1990年   31篇
  1989年   17篇
  1988年   32篇
  1987年   17篇
  1986年   19篇
  1985年   19篇
  1984年   18篇
  1983年   17篇
  1982年   20篇
  1981年   12篇
  1980年   16篇
  1978年   13篇
  1977年   15篇
  1976年   9篇
  1974年   12篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
201.
202.
203.
For autogenic ecosystem engineers, body size is an aspect of individual performance that has direct connections to community structure; yet the complex morphology of these species can make it difficult to draw clear connections between the environment and performance. We combined laboratory experiments and field surveys to test the hypothesis that individual body size was determined by disparate localized physiological responses to environmental conditions across the complex thallus of the intertidal kelp Hedophyllum sessile, a canopy‐forming physical ecosystem engineer. We documented substantial (> 40%) declines in whole‐thallus photosynthetic potential (as Maximum Quantum Yield, MQY) as a consequence of emersion, which were related to greater than 10‐fold increases in intra‐thallus MQY variability (as Coefficient of Variation). In laboratory experiments, desiccation and high light levels during emersion led to lasting impairment of photosynthetic potential and an immediate > 25% reduction in area due to tissue contraction, which was followed by complete loss of structural integrity after three days of submersion. Tissue exposed to desiccation and high light during emersion had higher nitrogen concentrations and lower phlorotannin concentrations than tissue in control treatments (on average 1.36 and 0.1x controls, respectively), suggesting that conditions during emersion have the potential to affect food quality for consumers. Our data indicate that the complex thallus morphology of H. sessile may be critical to this kelp’s ability to persist in the intertidal zone despite the physiological challenges of emersion and encourage a more nuanced view of the concept of “sub‐lethal stress” on the scale of the whole individual.  相似文献   
204.
Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1–dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIβ, but not RabGDIα. Phosphorylated RabGDIβ preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.  相似文献   
205.
Assemblies of actin and its regulators underlie the dynamic morphology of all eukaryotic cells. To understand how actin regulatory proteins work together to generate actin-rich structures such as filopodia, we analyzed the localization of diverse actin regulators within filopodia in Drosophila embryos and in a complementary in vitro system of filopodia-like structures (FLSs). We found that the composition of the regulatory protein complex where actin is incorporated (the filopodial tip complex) is remarkably heterogeneous both in vivo and in vitro. Our data reveal that different pairs of proteins correlate with each other and with actin bundle length, suggesting the presence of functional subcomplexes. This is consistent with a theoretical framework where three or more redundant subcomplexes join the tip complex stochastically, with any two being sufficient to drive filopodia formation. We provide an explanation for the observed heterogeneity and suggest that a mechanism based on multiple components allows stereotypical filopodial dynamics to arise from diverse upstream signaling pathways.  相似文献   
206.
The N2A segment of titin is a main signaling hub in the sarcomeric I-band that recruits various signaling factors and processing enzymes. It has also been proposed to play a role in force production through its Ca2+-regulated association with actin. However, the molecular basis by which N2A performs these functions selectively within the repetitive and extensive titin chain remains poorly understood. Here, we analyze the structure of N2A components and their association with F-actin. Specifically, we characterized the structure of its Ig domains by elucidating the atomic structure of the I81-I83 tandem using x-ray crystallography and computing a homology model for I80. Structural data revealed these domains to present heterogeneous and divergent Ig folds, where I81 and I83 have unique loop structures. Notably, the I81-I83 tandem has a distinct rotational chain arrangement that confers it a unique multi-domain topography. However, we could not identify specific Ca2+-binding sites in these Ig domains, nor evidence of the association of titin N2A components with F-actin in transfected C2C12 myoblasts or C2C12-derived myotubes. In addition, F-actin cosedimentation assays failed to reveal binding to N2A. We conclude that N2A has a unique architecture that predictably supports its selective recruitment of binding partners in signaling, but that its mechanical role through interaction with F-actin awaits validation.  相似文献   
207.
Wildlife models focused solely on a single strong influence (e.g., habitat components, wildlife harvest) are limited in their ability to detect key mechanisms influencing population change. Instead, we propose integrated modeling in the context of cumulative effects assessment using multispecies population dynamics models linked to landscape-climate simulation at large spatial and temporal scales. We developed an integrated landscape and population simulation model using ALCES Online as the model-building platform, and the model accounted for key ecological components and relationships among moose (Alces alces), grey wolves (Canis lupus nubilus), and woodland caribou (Rangifer tarandus caribou) in northern Ontario, Canada. We simulated multiple scenarios over 5 decades (beginning 2020) to explore sensitivity to climate change and land use and assessed effects at multiple scales. The magnitude of effect and the relative importance of key factors (climate change, roads, and habitat) differed depending on the scale of assessment. Across the full extent of the study area (654,311km2 [ecozonal scale]), the caribou population declined by 26% largely because of climate change and associated predator-prey response, which led to caribou range recession in the southern part of the study area. At the caribou range scale (108,378 km2), which focused on 2 herds in the northern part of the study area, climate change led to a 10% decline in the population and development led to an additional 7% decline. At the project scale (8,331 km2), which was focused more narrowly on the landscape surrounding 4 proposed mines, the caribou population declined by 29% largely in response to simulated development. Given that observed caribou population dynamics were sensitive to the cumulative effects of climate change, land use, interspecific interactions, and scale, insights from the analysis might not emerge under a less complex model. Our integrated modeling framework provides valuable support for broader regional assessments, including estimation of risk to caribou and Indigenous food security, and for developing and evaluating potential caribou recovery strategies. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   
208.
Although mechanisms involved in response of Saccharomyces cerevisiae to osmotic challenge are well described for low and sudden stresses, little is known about how cells respond to a gradual increase of the osmotic pressure (reduced water activity; aw) over several generations as it could encounter during drying in nature or in food processes. Using glycerol as a stressor, we propagated S. cerevisiae through a ramp of the osmotic pressure (up to high molar concentrations to achieve testing-to-destruction) at the rate of 1.5 MPa day-1 from 1.38 to 58.5 MPa (0.990–0.635 aw). Cultivability (measured at 1.38 MPa and at the harvest osmotic pressure) and glucose consumption compared with the corresponding sudden stress showed that yeasts were able to grow until about 10.5 MPa (0.926 aw) and to survive until about 58.5 MPa, whereas glucose consumption occurred until 13.5 MPa (about 0.915 aw). Nevertheless, the ramp conferred an advantage since yeasts harvested at 10.5 and 34.5 MPa (0.778 aw) showed a greater cultivability than glycerol-shocked cells after a subsequent shock at 200 MPa (0.234 aw) for 2 days. FTIR analysis revealed structural changes in wall and proteins in the range 1.38–10.5 MPa, which would be likely to be involved in the resistance at extreme osmotic pressure.  相似文献   
209.
Although a growing number of studies suggest interactions between Schistosoma parasites and viral infections, the effects of schistosome infections on the host response to viruses have not been evaluated comprehensively. In this systematic review, we investigated how schistosomes impact incidence, virulence, and prevention of viral infections in humans and animals. We also evaluated immune effects of schistosomes in those coinfected with viruses. We screened 4,730 studies and included 103. Schistosomes may increase susceptibility to some viruses, including HIV and Kaposi’s sarcoma-associated herpesvirus, and virulence of hepatitis B and C viruses. In contrast, schistosome infection may be protective in chronic HIV, Human T-cell Lymphotropic Virus-Type 1, and respiratory viruses, though further research is needed. Schistosome infections were consistently reported to impair immune responses to hepatitis B and possibly measles vaccines. Understanding the interplay between schistosomes and viruses has ramifications for anti-viral vaccination strategies and global control of viral infections.  相似文献   
210.
Age‐related changes in survival and reproduction are common in seabirds; however, the underlying causes remain elusive. A lack of experience for young individuals, and a decline in foraging performance for old birds, could underlie age‐related variation in reproduction because reproductive success is connected closely to provisioning offspring. For seabirds, flapping flight during foraging trips is physiologically costly; inexperience or senescent decline in performance of this demanding activity might cap delivery of food to the nest, providing a proximate explanation for poor breeding success in young and old age, respectively. We evaluated the hypothesis that young and old Nazca boobies (Sula granti), a Galápagos seabird, demonstrate deficits in foraging outcomes and flight performance. We tagged incubating male and female adults across the life span with both accelerometer and GPS loggers during the incubation periods of two breeding seasons (years), during the 2015 El Niño and the following weak La Niña. We tested the ability of age, sex, and environment to explain variation in foraging outcomes (e.g., mass gained) and flight variables (e.g., wingbeat frequency). Consistent with senescence, old birds gained less mass while foraging than middle‐aged individuals, a marginal effect, and achieved a slower airspeed late in a foraging trip. Contrary to expectations, young birds showed no deficit in foraging outcomes or flight performance, except for airspeed (contingent on environment). Young birds flew slower than middle‐aged birds in 2015, but faster than middle‐aged birds in 2016. Wingbeat frequency, flap–glide ratio, and body displacement (approximating wingbeat strength) failed to predict airspeed and were unaffected by age. Sex influenced nearly all aspects of performance. Environment affected flight performance and foraging outcomes. Boobies'' foraging outcomes were better during the extreme 2015 El Niño than during the 2016 weak La Niña, a surprising result given the negative effects tropical seabirds often experience during extreme El Niños.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号