首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18702篇
  免费   2017篇
  国内免费   2篇
  20721篇
  2023年   104篇
  2022年   230篇
  2021年   413篇
  2020年   248篇
  2019年   301篇
  2018年   373篇
  2017年   319篇
  2016年   550篇
  2015年   1027篇
  2014年   1023篇
  2013年   1246篇
  2012年   1590篇
  2011年   1540篇
  2010年   981篇
  2009年   837篇
  2008年   1111篇
  2007年   1123篇
  2006年   1046篇
  2005年   1022篇
  2004年   961篇
  2003年   859篇
  2002年   784篇
  2001年   199篇
  2000年   159篇
  1999年   195篇
  1998年   183篇
  1997年   108篇
  1996年   109篇
  1995年   100篇
  1994年   102篇
  1993年   81篇
  1992年   96篇
  1991年   97篇
  1990年   101篇
  1989年   91篇
  1988年   81篇
  1987年   82篇
  1986年   92篇
  1985年   74篇
  1984年   78篇
  1983年   62篇
  1982年   72篇
  1981年   45篇
  1980年   52篇
  1979年   47篇
  1977年   49篇
  1974年   58篇
  1973年   47篇
  1971年   42篇
  1969年   45篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The suspension-feeding cichlids Oreochromis aureus (blue tilapia) and Oreochromis esculentus (ngege tilapia) are able to selectively retain small food particles. The gill rakers and microbranchiospines of these species have been assumed to function as filters. However, surgical removal of these oral structures, which also removed associated mucus, did not significantly affect the total number of 11–200 μm particles ingested by the fish. This result supports the hypothesis that the branchial arch surfaces themselves play an important role in crossflow filtration. Both species selectively retained microspheres greater than 50 μm with gill rakers and microbranchiospines intact as well as removed, demonstrating that neither these structures nor mucus are necessary for size selectivity to occur during biological crossflow filtration. After removal of the gill rakers and microbranchiospines, O. esculentus retained significantly more microspheres 51–70 μm in diameter and fewer 91–130 μm microspheres compared to retention with intact structures, but the particle size selectivity of O. aureus was not affected significantly. These results support conclusions from previous computational fluid dynamics simulations indicating that particle size can have marked effects on particle trajectory and retention inside the fish oropharyngeal cavity during crossflow filtration. The substantial inter-individual variability in particle retention by suspension-feeding fish is an unexplored area of research with the potential to increase our understanding of the factors influencing particle retention during biological filtration.  相似文献   
992.
It has been demonstrated that two-dimensional (2D) monolayer cancer cell proliferation assay for anti-cancer drug screening is a very artificial model and cannot represent the characteristics of three-dimensional (3D) solid tumors. The multi-cellular in vitro 3D tumor spheroid model is of intermediate complexity, and can provide a bridge to the gap between the complex in vivo tumors and simple in vitro monolayer cell cultures. In this study, a simple and cost-effective cancer 3D spheroid assay suitable for small molecule anti-cancer compound screening was developed, standardized and validated on H292 non-small lung cancer cell line. A pilot screening with this assay was performed utilizing a compound library consisting of 41 anti-cancer agents. The traditional 2D monolayer cell proliferation assay was also performed with the same cell line and compounds. A correlational study based on the IC50 values from the 2D and 3D assays was conducted. There is low correlation with the two sets of biological data, suggesting the two screening methods provide different information regarding the potency of the tested drug candidates.  相似文献   
993.
The origin of domestic dogs remains controversial, with genetic data indicating a separation between modern dogs and wolves in the Late Pleistocene. However, only a few dog-like fossils are found prior to the Last Glacial Maximum, and it is widely accepted that the dog domestication predates the beginning of agriculture about 10,000 years ago. In order to evaluate the genetic relationship of one of the oldest dogs, we have isolated ancient DNA from the recently described putative 33,000-year old Pleistocene dog from Altai and analysed 413 nucleotides of the mitochondrial control region. Our analyses reveal that the unique haplotype of the Altai dog is more closely related to modern dogs and prehistoric New World canids than it is to contemporary wolves. Further genetic analyses of ancient canids may reveal a more exact date and centre of domestication.  相似文献   
994.
The high-risk human papillomavirus (HPV) E6 proteins are consistently expressed in HPV-associated lesions and cancers. HPV16 E6 sustains the activity of the mTORC1 and mTORC2 signaling cascades under conditions of growth factor deprivation. Here we report that HPV16 E6 activated mTORC1 by enhanced signaling through receptor protein tyrosine kinases, including epidermal growth factor receptor and insulin receptor and insulin-like growth factor receptors. This is evidenced by sustained signaling through these receptors for several hours after growth factor withdrawal. HPV16 E6 increased the internalization of activated receptor species, and the signaling adaptor protein GRB2 was shown to be critical for HPV16 E6 mediated enhanced EGFR internalization and mTORC1 activation. As a consequence of receptor protein kinase mediated mTORC1 activation, HPV16 E6 expression increased cellular migration of primary human epithelial cells. This study identifies a previously unappreciated mechanism by which HPV E6 proteins perturb host-signaling pathways presumably to sustain protein synthesis during the viral life cycle that may also contribute to cellular transforming activities of high-risk HPV E6 proteins.  相似文献   
995.
A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hβNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods.  相似文献   
996.
Clostridium perfringens epsilon toxin (Etx) is a pore‐forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx‐H149A), previously reported to have reduced, but not abolished, toxicity. The three‐dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx‐H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx‐H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx‐H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx‐H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx‐H149A identified a glycan (β‐octyl‐glucoside) binding site in domain III of Etx‐H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity.  相似文献   
997.
Strain Co23, an anaerobic spore-forming microorganism, was enriched and isolated from a compost soil on the basis of its ability to grow with 2,3-dichlorophenol (DCP) as its electron acceptor, ortho chlorines were removed from polysubstituted phenols but not from monohalophenols. Growth by chlororespiration was indicated by a growth yield of 3.24 g of cells per mol of reducing equivalents (as 2[H]) from lactate oxidation to acetate in the presence of 3-chloro-4-hydroxybenzoate but no growth in the absence of the halogenated electron acceptor. Other indicators of chlororespiration were the fraction of electrons from the electron donor used for dechlorination (0.67) and the H2 threshold concentration of < 1.0 ppm. Additional electron donors utilized for reductive dehalogenation were pyruvate, formate, butyrate, crotonate, and H2. Pyruvate supported homoacetogenic growth in the absence of an electron acceptor. Strain Co23 also used sulfite, thiosulfate, and sulfur as electron acceptors for growth, but it did not use sulfate, nitrate or fumarate. The temperature optimum for growth was 37 degrees C; however, the rates of dechlorination were optimum at 45 degrees C and activity persisted to temperatures as high as 55 degrees C. The 16S rRNA sequence was determined, and strain Co23 was found to be related to Desulfitobacterium dehalogenans JW/IU DC1 and Desulfitobacterium strain PCE1, with sequence similarities of 97.2 and 96.8%, respectively. The phylogenetic and physiological properties exhibited by strain Co23 place it into a new species designated Desulfitobacterium chlororespirans.  相似文献   
998.
The CcmE protein from Escherichia coli is a haem-binding protein   总被引:2,自引:0,他引:2  
We previously reported that a 17.5-kDa haem-binding polypeptide accumulates in Escherichia coli K-12 mutants defective in an essential gene for cytochrome c assembly, ccmF , and speculated that this polypeptide is either CcmE or CcmG. The haem-containing polypeptide, which is associated with the cytoplasmic membrane, has now been identified by N-terminal sequencing to be CcmE. The haem-dependent peroxidase activity of CcmE is clearly visible not only in a ccmF mutant, but also in ccmG and ccmH mutants, implying that CcmE functions either before or in the same step as CcmF, CcmG and CcmH in cytochrome c maturation. A trxA mutant, like the dipZ mutant, was unable to assemble c -type cytochromes or catalyse formate-dependent nitrite reduction: both activities were restored in the trxA and dipZ , but not ccmG , mutants by the reducing agent, 2-mercaptoethanesulphonic acid. Our data suggest that haem transferred across the cytoplasmic membrane by the CcmABCD complex becomes associated with CcmE, possibly by a labile covalent bond, before it is transferred to the cytochrome c apoproteins by the periplasmic haem lyase encoded by ccmF and ccmH . We further propose that CcmG is essential to reduce the disulphide bonds formed in cytochrome c apoproteins by DsbA, before haem is attached by the haem lyase. Electrons for disulphide bond reduction are supplied from thioredoxin in the cytoplasm via DipZ in the membrane, but can be replaced by the chemical reductant, 2-mercaptoethanesulphonic acid. According to this model, CcmG is the last protein in the reducing pathway which interacts stereospecifically with the apoprotein.  相似文献   
999.
Glioblastoma (GB) is the highest grade of primary adult brain tumors, characterized by a poorly defined and highly invasive cell population. Importantly, these invading cells are attributed with having a decreased sensitivity to radiation and chemotherapy. TNF-like weak inducer of apoptosis (TWEAK)-Fn14 ligand-receptor signaling is one mechanism in GB that promotes cell invasiveness and survival and is dependent upon the activity of multiple Rho GTPases, including Rac1. Here we report that Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF), a RhoG-specific guanine nucleotide exchange factor, is overexpressed in GB tumors and promotes TWEAK-Fn14-mediated glioma invasion. Importantly, levels of SGEF expression in GB tumors inversely correlate with patient survival. SGEF mRNA expression is increased in GB cells at the invasive rim relative to those in the tumor core, and knockdown of SGEF expression by shRNA decreases glioma cell migration in vitro and invasion ex vivo. Furthermore, we showed that, upon TWEAK stimulation, SGEF is recruited to the Fn14 cytoplasmic tail via TRAF2. Mutation of the Fn14-TRAF domain site or depletion of TNF receptor-associated factor 2 (TRAF2) expression by siRNA oligonucleotides blocked SGEF recruitment to Fn14 and inhibited SGEF activity and subsequent GB cell migration. We also showed that knockdown of either SGEF or RhoG diminished TWEAK activation of Rac1 and subsequent lamellipodia formation. Together, these results indicate that SGEF-RhoG is an important downstream regulator of TWEAK-Fn14-driven GB cell migration and invasion.  相似文献   
1000.
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. In vivo, this facultative intracellular bacterium survives and replicates mainly in the cytoplasm of infected cells. We have recently identified a genetic locus, designated moxR that is important for stress resistance and intramacrophage survival of F. tularensis. In the present work, we used tandem affinity purification coupled to mass spectrometry to identify in vivo interacting partners of three proteins encoded by this locus: the MoxR-like ATPase (FTL_0200), and two proteins containing motifs predicted to be involved in protein–protein interactions, bearing von Willebrand A (FTL_0201) and tetratricopeptide (FTL_0205) motifs. The three proteins were designated here for simplification, MoxR, VWA1, and TPR1, respectively. MoxR interacted with 31 proteins, including various enzymes. VWA1 interacted with fewer proteins, but these included the E2 component of 2-oxoglutarate dehydrogenase and TPR1. The protein TPR1 interacted with one hundred proteins, including the E1 and E2 subunits of both oxoglutarate and pyruvate dehydrogenase enzyme complexes, and their common E3 subunit. Remarkably, chromosomal deletion of either moxR or tpr1 impaired pyruvate dehydrogenase and oxoglutarate dehydrogenase activities, supporting the hypothesis of a functional role for the interaction of MoxR and TPR1 with these complexes. Altogether, this work highlights possible links between stress resistance and metabolism in F. tularensis virulence.Francisella tularensis is responsible for the disease tularamia in a large number of animal species. This highly infectious bacterial pathogen can be transmitted to humans in numerous ways (1, 2, 3), including direct contact with sick animals, inhalation, ingestion of contaminated water or food, or by bites from ticks, mosquitoes, or flies. Four different subspecies (subsp.) of F. tularensis that differ in virulence and geographic distribution exist, designated subsp. tularensis (type A), subsp. holarctica (type B), subsp. Novicida, and subsp. mediasiatica, respectively. F. tularensis subsp. tularensis is the most virulent subspecies causing a severe disease in humans, whereas F. tularensis subsp. holarctica causes a similar disease but of less severity (4). Because of its high infectivity and lethality, F. tularensis is considered a potential bioterrorism agent (5).F. tularensis is able to survive and to replicate in the cytoplasm of a variety of infected cells, including macrophages. To resist this stressful environment, the bacterium must have developed stress resistance mechanisms, most of which are not yet well characterized. We recently reported the identification of a novel genetic locus that is important for stress resistance and intracellular survival of F. tularensis (6). This locus was designated moxR because the first gene FTL_0200, encodes a protein belonging to the AAA+ ATPase of the MoxR family ((7) and references therein). The data obtained in that first study had led us to suggest that the F. tularensis MoxR-like protein might constitute, in combination with other proteins of the locus, a chaperone complex contributing to F. tularensis pathogenesis.To further validate this hypothesis and expand our initial observations, we here decided to perform tandem affinity purification (TAP),1 using a dual affinity tag approach coupled to mass spectroscopy analyses (8), to identify proteins interacting in vivo with three proteins encoded by the proximal portion of the moxR locus. For this, we chose as baits: the MoxR-like protein (FTL_0200) and two proteins bearing distinct motifs possibly involved in protein–protein interactions, FTL_0201 (Von Willebrand Factor Type A domain, or VWA) and FTL_0205 (tetratrichopeptide repeat or TPR). The three proteins were designated here for simplification, MoxR, VWA1, and TPR1; and the corresponding genes moxR, vwa1, and tpr1, respectively.VWA domains are present in all three kingdoms of life. They consist of a β-sheet sandwiched by multiple α helices. Frequently, VWA domain-containing proteins function in multiprotein complexes (9). TPR typically contain 34 amino acids. Many three-dimensional structures of TPR domains have been solved, revealing amphipathic helical structures (10). TPR-containing proteins are also found in all kingdoms of life. They can be involved in a variety of functions, and generally mediate protein–protein interactions. In the past few years, several TPR-related proteins have been shown to be involved in virulence mechanisms in pathogenic bacteria ((11) and references therein).Our proteomic approach allowed us to identify a series of protein interactants for each of the three moxR-encoded proteins. Remarkably, the protein TPR1 interacted with all the subunits of the pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (OGDH) complexes. Furthermore, inactivation of tpr1 also severely impaired the activities of these two enzymes. Inactivation of tpr1 affected bacterial resistance to several stresses (and in particular oxidative stress), intramacrophagic bacterial multiplication and bacterial virulence in the mouse model. Functional implications and possible relationship between bacterial metabolism, stress defense, and bacterial virulence are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号