首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15562篇
  免费   1534篇
  国内免费   2篇
  2024年   12篇
  2023年   85篇
  2022年   195篇
  2021年   376篇
  2020年   233篇
  2019年   272篇
  2018年   325篇
  2017年   294篇
  2016年   506篇
  2015年   954篇
  2014年   923篇
  2013年   1130篇
  2012年   1469篇
  2011年   1405篇
  2010年   897篇
  2009年   770篇
  2008年   996篇
  2007年   995篇
  2006年   946篇
  2005年   903篇
  2004年   859篇
  2003年   737篇
  2002年   679篇
  2001年   112篇
  2000年   70篇
  1999年   113篇
  1998年   135篇
  1997年   77篇
  1996年   74篇
  1995年   53篇
  1994年   55篇
  1993年   52篇
  1992年   37篇
  1991年   46篇
  1990年   30篇
  1989年   16篇
  1988年   33篇
  1987年   16篇
  1986年   16篇
  1985年   18篇
  1984年   14篇
  1983年   18篇
  1982年   20篇
  1981年   12篇
  1980年   16篇
  1978年   11篇
  1977年   14篇
  1976年   7篇
  1974年   11篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro‐organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function . Trait‐based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and ‐omics‐based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait‐based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.  相似文献   
172.
173.
The G protein‐coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR‐2, expressed in AWC and ASI amphid sensory neurons. STR‐2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR‐2 regulates expression of delta‐9 desaturases, fat‐5, fat‐6 and fat‐7, and of diacylglycerol acyltransferase dgat‐2. Rescue of the STR‐2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat‐5, dgat‐2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild‐type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR‐2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.  相似文献   
174.
Ecological restoration is considered to play an important role in mitigating climate change, protecting biodiversity, and preventing environmental degradation. Yet, there are often multiple perspectives on what outcomes restoration should be aiming to achieve, and how we should get to that point. In this study we interview a range of policymakers, academics, and non‐governmental organization (NGO) representatives to explore the range of perspectives on the restoration of Indonesia's tropical peatlands—key global ecosystems that have undergone large‐scale degradation. Thematic analysis suggests that participants agreed about the importance of restoration, but had differing opinions on how effective restoration activities to date have been and what a restored peatland landscape should look like. These results exemplify how ecological restoration can mean different things to different people, but also highlight important areas of consensus for moving forward with peatland restoration strategies.  相似文献   
175.
Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant‐centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be ‘limited’ by nutrients or carbon alone. Here, we outline how models aimed at predicting non‐steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant–microbe interactions in coupled carbon and nutrient models.  相似文献   
176.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.  相似文献   
177.
The combination of ipilimumab and nivolumab is a highly active systemic therapy for metastatic melanoma but can cause significant toxicity. We explore the safety and efficacy of this treatment in routine clinical practice, particularly in the setting of serine/threonine‐protein kinase B‐Raf (BRAF)‐targeted therapy. Consecutive patients with unresectable stage IIIC/IV melanoma commenced on ipilimumab and nivolumab across 10 tertiary melanoma institutions in Australia were identified retrospectively. Data collected included demographics, response and survival outcomes. A total of 152 patients were included for analysis, 39% were treatment‐naïve and 22% failed first‐line BRAF/MEK inhibitors. Treatment‐related adverse events occurred in 67% of patients, grade 3–5 in 38%. The overall objective response rate was 41%, 57% in treatment‐naïve and 21% in BRAF/MEK failure patients. Median progression‐free survival was 4.0 months (95% CI, 3.0–6.0) in the whole cohort, 11.0 months (95% CI, 6.0‐NR) in treatment‐naïve and 2.0 months (95% CI, 1.4–4.6) in BRAF/MEK failure patients. The combination of ipilimumab and nivolumab can be used safely and effectively in a real‐world population. While first‐line efficacy appears comparable to trial populations, BRAF‐mutant patients failing prior BRAF/MEK inhibitors show less response.  相似文献   
178.
179.
Our ability to effectively prevent the transmission of the dengue virus through targeted control of its vector, Aedes aegypti, depends critically on our understanding of the link between mosquito abundance and human disease risk. Mosquito and clinical surveillance data are widely collected, but linking them requires a modeling framework that accounts for the complex non-linear mechanisms involved in transmission. Most critical are the bottleneck in transmission imposed by mosquito lifespan relative to the virus’ extrinsic incubation period, and the dynamics of human immunity. We developed a differential equation model of dengue transmission and embedded it in a Bayesian hierarchical framework that allowed us to estimate latent time series of mosquito demographic rates from mosquito trap counts and dengue case reports from the city of Vitória, Brazil. We used the fitted model to explore how the timing of a pulse of adult mosquito control influences its effect on the human disease burden in the following year. We found that control was generally more effective when implemented in periods of relatively low mosquito mortality (when mosquito abundance was also generally low). In particular, control implemented in early September (week 34 of the year) produced the largest reduction in predicted human case reports over the following year. This highlights the potential long-term utility of broad, off-peak-season mosquito control in addition to existing, locally targeted within-season efforts. Further, uncertainty in the effectiveness of control interventions was driven largely by posterior variation in the average mosquito mortality rate (closely tied to total mosquito abundance) with lower mosquito mortality generating systems more vulnerable to control. Broadly, these correlations suggest that mosquito control is most effective in situations in which transmission is already limited by mosquito abundance.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号