首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15622篇
  免费   1538篇
  国内免费   2篇
  17162篇
  2024年   16篇
  2023年   97篇
  2022年   219篇
  2021年   378篇
  2020年   233篇
  2019年   273篇
  2018年   324篇
  2017年   294篇
  2016年   507篇
  2015年   955篇
  2014年   926篇
  2013年   1130篇
  2012年   1470篇
  2011年   1405篇
  2010年   895篇
  2009年   768篇
  2008年   996篇
  2007年   995篇
  2006年   947篇
  2005年   904篇
  2004年   860篇
  2003年   740篇
  2002年   679篇
  2001年   114篇
  2000年   70篇
  1999年   115篇
  1998年   136篇
  1997年   77篇
  1996年   72篇
  1995年   55篇
  1994年   55篇
  1993年   52篇
  1992年   38篇
  1991年   47篇
  1990年   30篇
  1989年   19篇
  1988年   32篇
  1987年   19篇
  1986年   16篇
  1985年   20篇
  1984年   14篇
  1983年   17篇
  1982年   20篇
  1981年   12篇
  1980年   17篇
  1979年   7篇
  1978年   11篇
  1977年   14篇
  1976年   7篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Cancer cells exhibit increased glycolysis for ATP production due, in part, to respiration injury (the Warburg effect). Because ATP generation through glycolysis is less efficient than through mitochondrial respiration, how cancer cells with this metabolic disadvantage can survive the competition with other cells and eventually develop drug resistance is a long-standing paradox. We report that mitochondrial respiration defects lead to activation of the Akt survival pathway through a novel mechanism mediated by NADH. Respiration-deficient cells (rho(-)) harboring mitochondrial DNA deletion exhibit dependency on glycolysis, increased NADH, and activation of Akt, leading to drug resistance and survival advantage in hypoxia. Similarly, chemical inhibition of mitochondrial respiration and hypoxia also activates Akt. The increase in NADH caused by respiratory deficiency inactivates PTEN through a redox modification mechanism, leading to Akt activation. These findings provide a novel mechanistic insight into the Warburg effect and explain how metabolic alteration in cancer cells may gain a survival advantage and withstand therapeutic agents.  相似文献   
142.
Stimulation of -adrenergic receptors (-AR) induces apoptosis in adult rat ventricular myocytes (ARVMs) via the JNK-dependent activation of mitochondrial death pathway. Recently, we have shown that inhibition of matrix metalloproteinase-2 (MMP-2) inhibits -AR-stimulated apoptosis and that the apoptotic effects of MMP-2 are possibly mediated via its interaction with 1 integrins. Herein we tested the hypothesis that MMP-2 impairs 1 integrin-mediated survival signals, such as activation of focal adhesion kinase (FAK), and activates the JNK-dependent mitochondrial death pathway. Inhibition of MMP-2 using SB3CT, a selective gelatinase inhibitor, significantly increased FAK phosphorylation (Tyr-397 and Tyr-576). TIMP-2, tissue inhibitor of MMP-2, produced a similar increase in FAK phosphorylation, whereas treatment of ARVMs with purified active MMP-2 significantly inhibited FAK phosphorylation. Inhibition of MMP-2 using SB3CT inhibited -AR-stimulated activation of JNKs and levels of cytosolic cytochrome c. Treatment of ARVMs with purified MMP-2 increased cytosolic cytochrome c release. Furthermore, inhibition of MMP-2 using SB3CT and TIMP-2 attenuated -AR-stimulated decreases in mitochondrial membrane potential. Overexpression of 1 integrins using adenoviruses expressing the human 1A-integrin decreased -AR-stimulated cytochrome c release and apoptosis. Overexpression of 1 integrins also inhibited apoptosis induced by purified active MMP-2. These data suggest that MMP-2 interferes with the 1 integrin survival signals and activates JNK-dependent mitochondrial death pathway leading to apoptosis. matrix metalloproteinases; focal adhesion kinase; c-Jun NH2-terminal kinase; cytochrome c  相似文献   
143.
Sonchus yellow net virus is a plant nucleorhabdovirus whose nucleocapsid (N), phosphoprotein (P), and polymerase (L) proteins form large viroplasms in the nuclei of infected plants (C. R. F. Martins, J. A. Johnson, D. M. Lawrence, T. J. Choi, A. Pisi, S. L. Tobin, D. Lapidus, J. D. O. Wagner, S. Ruzin, K. McDonald, and A. O. Jackson, J. Virol. 72:5669-5679, 1998). When expressed alone, the N protein localizes to the nuclei of plant and yeast (Saccharomyces cerevisiae) cells and the P protein is distributed throughout the cells, but coexpression of N and P results in formation of subnuclear viroplasm-like foci (M. M. Goodin, J. Austin, R. Tobias, M. Fujita, C. Morales, and A. O. Jackson, J. Virol. 75:9393-9406, 2001; M. M. Goodin, R. G. Dietzgen, D. Schichnes, S. Ruzin, and A. O. Jackson, Plant J. 31:375-383, 2002). We now show that the N protein and various fluorescent derivatives form similar subnuclear foci in plant cells and that homologous interactions mediated by a helix-loop-helix region near the amino terminus are required for formation of the foci. Mutations within the helix-loop-helix region also interfere with N- and P-protein interactions that are required for N and P colocalization in the subnuclear foci. Affinity purification of N proteins harboring single mutations within the motif revealed that Tyr40 is critical for N-N and N-P interactions. Additional in vitro binding assays also indicated that the N protein binds to yeast and plant importin alpha homologues, whereas mutations in the carboxy-terminal nuclear localization signal abrogate importin alpha binding. The P protein did not bind to the importin alpha homologues, suggesting that the N and P proteins use different pathways for nuclear entry. Our results in toto support a model suggesting that during infection, the N and P proteins enter the nucleus independently, that viroplasm formation requires homologous N-protein interactions, and that P protein targeting to the viroplasm requires N-P protein interactions that occur after N and P protein import into the nucleus.  相似文献   
144.
The Saccharomyces cerevisiae Pif1p helicase is a negative regulator of telomere length that acts by removing telomerase from chromosome ends. The catalytic subunit of yeast telomerase, Est2p, is telomere associated throughout most of the cell cycle, with peaks of association in both G1 phase (when telomerase is not active) and late S/G2 phase (when telomerase is active). The G1 association of Est2p requires a specific interaction between Ku and telomerase RNA. In mutants lacking this interaction, telomeres were longer in the absence of Pif1p than in the presence of wild-type PIF1, indicating that endogenous Pif1p inhibits the active S/G2 form of telomerase. Pif1p abundance was cell cycle regulated, low in G1 and early S phase and peaking late in the cell cycle. Low Pif1p abundance in G1 phase was anaphase-promoting complex dependent. Thus, endogenous Pif1p is unlikely to act on G1 bound Est2p. Overexpression of Pif1p from a non-cell cycle-regulated promoter dramatically reduced viability in five strains with impaired end protection (cdc13–1, yku80Δ, yku70Δ, yku80–1, and yku80–4), all of which have longer single-strand G-tails than wild-type cells. This reduced viability was suppressed by deleting the EXO1 gene, which encodes a nuclease that acts at compromised telomeres, suggesting that the removal of telomerase by Pif1p exposed telomeres to further C-strand degradation. Consistent with this interpretation, depletion of Pif1p, which increases the amount of telomere-bound telomerase, suppressed the temperature sensitivity of yku70Δ and cdc13–1 cells. Furthermore, eliminating the pathway that recruits Est2p to telomeres in G1 phase in a cdc13–1 strain also reduced viability. These data suggest that wild-type levels of telomere-bound telomerase are critical for the viability of strains whose telomeres are already susceptible to degradation.  相似文献   
145.
146.
Understanding the role of disease in population regulation is important to the conservation of wildlife. We evaluated the prevalence of Toxoplasma gondii exposure and Sarcocystis spp. infection in 46 road-killed and accidentally trapper-killed fisher (Martes pennanti) carcasses collected and stored at -20 C by the Pennsylvania Game Commission from February 2002 to October 2008. Blood samples were assayed for T. gondii antibodies using the modified agglutination test (MAT, 1 : 25) and an indirect immunofluorescent antibody test (IFAT, 1 : 128). For genetic analysis, DNA samples were extracted from thoracic and pelvic limb skeletal muscle from each carcass to test for Sarcocystis spp. using 18s-rRNA PCR primers. Antibodies to T. gondii were found in 100% (38 of 38) of the fishers tested by MAT and in 71% (32 of 45) of the fishers tested by IFAT. PCR analysis revealed that 83% (38 of 46) of the fishers were positive for Sarcocystis spp. Sequence analysis of 7 randomly chosen amplicons revealed the fisher sarcocysts had a 98.3% to 99.1% identity to several avian Sarcocystis spp. sequences in GenBank. Data from our study suggest that a high percentage of fishers in Pennsylvania have been exposed to T. gondii and are infected with Sarcocystis spp.  相似文献   
147.
The E6 and E7 genes of the high-risk human papillomavirus (HPV) types encode oncoproteins, and both act by interfering with the activity of cellular tumor suppressor proteins. E7 proteins act by associating with members of the retinoblastoma family, while E6 increases the turnover of p53. p53 has been implicated as a regulator of both the G1/S cell cycle checkpoint and the mitotic spindle checkpoint. When fibroblasts from p53 knockout mice are treated with the spindle inhibitor nocodazole, a rereplication of DNA occurs without transit through mitosis. We investigated whether E6 or E7 could induce a similar loss of mitotic checkpoint activity in human keratinocytes. Recombinant retroviruses expressing high-risk E6 alone, E7 alone, and E6 in combination with E7 were used to infect normal human foreskin keratinocytes (HFKs). Established cell lines were treated with nocodazole, stained with propidium iodide, and analyzed for DNA content by flow cytometry. Cells infected with high-risk E6 were found to continue to replicate DNA and accumulated an octaploid (8N) population. Surprisingly, expression of E7 alone was also able to bypass this checkpoint. Cells expressing E7 alone exhibited increased levels of p53, while those expressing E6 had significantly reduced levels. The p53 present in the E7 cells was active, as increased levels of p21 were observed. This suggested that E7 bypassed the mitotic checkpoint by a p53-independent mechanism. The levels of MDM2, a cellular oncoprotein also implicated in control of the mitotic checkpoint, were significantly elevated in the E7 cells compared to the normal HFKs. In E6-expressing cells, the levels of MDM2 were undetectable. It is possible that abrogation of Rb function by E7 or increased expression of MDM2 contributes to the loss of mitotic spindle checkpoint control in the E7 cells. These findings suggest mechanisms by which both HPV oncoproteins contribute to genomic instability at the mitotic checkpoint.  相似文献   
148.
Smith-Lemli-Opitz syndrome (SLOS) is an inherited autosomal recessive cholesterol deficiency disorder. Our studies have shown that in SLOS children, urinary mevalonate excretion is normal and reflects hepatic HMG-CoA reductase activity but not ultimate sterol synthesis. Hence, we hypothesized that in SLOS there may be increased diversion of mevalonate to nonsterol isoprenoid synthesis. To test our hypothesis, we measured urinary dolichol and ubiquinone, two nonsterol isoprenoids, in 16 children with SLOS and 15 controls, all fed a low-cholesterol diet. The urinary excretion of both dolichol (P < 0.002) and ubiquinone (P < 0.02) in SLOS children was 7-fold higher than in control children, whereas mevalonate excretion was comparable. In a subset of 12 SLOS children, a high-cholesterol diet decreased urinary mevalonate excretion by 61% (P < 0.001), dolichol by 70% (P < 0.001), and ubiquinone by 67% (P < 0.03). Our hypothesis that in SLOS children, normal urinary mevalonate excretion results from increased diversion of mevalonate into the production of nonsterol isoprenoids is supported. Dietary cholesterol supplementation reduced urinary mevalonate and nonsterol isoprenoid excretion but did not change the relative ratios of their excretion. Therefore, in SLOS, a secondary peripheral regulation of isoprenoid synthesis may be stimulated.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号