首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15593篇
  免费   1543篇
  国内免费   2篇
  2024年   16篇
  2023年   97篇
  2022年   216篇
  2021年   375篇
  2020年   233篇
  2019年   274篇
  2018年   324篇
  2017年   294篇
  2016年   507篇
  2015年   954篇
  2014年   924篇
  2013年   1127篇
  2012年   1470篇
  2011年   1404篇
  2010年   894篇
  2009年   767篇
  2008年   996篇
  2007年   993篇
  2006年   947篇
  2005年   905篇
  2004年   860篇
  2003年   737篇
  2002年   679篇
  2001年   114篇
  2000年   73篇
  1999年   114篇
  1998年   135篇
  1997年   76篇
  1996年   71篇
  1995年   55篇
  1994年   55篇
  1993年   54篇
  1992年   37篇
  1991年   47篇
  1990年   32篇
  1989年   16篇
  1988年   31篇
  1987年   16篇
  1986年   17篇
  1985年   18篇
  1984年   14篇
  1983年   17篇
  1982年   21篇
  1981年   12篇
  1980年   16篇
  1979年   7篇
  1978年   11篇
  1977年   14篇
  1976年   7篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
Therapeutic administration of mesenchymal stem cells (MSCs) by systemic delivery utilizes the innate ability of the cells to home to damaged tissues, but it can be an inefficient process due to a limited knowledge of cellular cues that regulate migration and homing. Our lab recently discovered that a potent pro-inflammatory cytokine, macrophage migration inhibitory factor (MIF), inhibits MSC migration. Because MIF may act on multiple cellular targets, an activating antibody (CD74Ab) was employed in this study to examine the effect of one MIF receptor, CD74 (major histocompatibility complex class II-associated invariant chain), on MSC motility. CD74 activation inhibits in a dose-dependent manner up to 90% of in vitro migration of MSCs at 40 μg/ml CD74Ab (p?<?0.001), with consistent effects observed among three MSC donor preparations. A blocking peptide from the C-terminus of CD74 eliminates the effect of CD74Ab on MSCs. This suggests that MIF may act on MSCs, at least in part, through CD74. Late-passage MSCs exhibit less chemokinesis than those at passage 2. However, MSCs remain responsive to CD74 activation during ex vivo expansion: MSC migration is inhibited ~2-fold in the presence of 5 µg/ml CD74Ab at passage 9 vs. ~3-fold at passage 2 (p?<?0.001). Consistent with this result, there were no significant differences in CD74 expression at all tested passages or after CD74Ab exposure. Targeting CD74 to regulate migration and homing potentially may be a useful strategy to improve the efficacy of a variety of MSC therapies, including those that require ex vivo expansion.  相似文献   
162.
Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade‐off possibilities. The competition‐defence hypothesis posits a trade‐off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth‐defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth‐defence trade‐off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life‐history groups and within the majority of individual sites. Thus, a growth‐defence trade‐off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.  相似文献   
163.
A molecular phylogeny of New World emballonurid bats based on parsimony and Bayesian analyses of loci from the three different nuclear genetic transmission pathways in mammals (autosomal, X, and Y chromosomes) is well supported and independently corroborated by each individual gene tree. This is in contrast to a single most parsimonious but poorly supported tree based on morphological data, which has only one intergeneric or higher relationship shared with the molecular phylogeny. Combining the morphological and molecular data partitions results in a tree similar to the molecular tree suggesting a high degree of homoplasy and low phylogenetic signal in the morphological data set. Behavioral data are largely incomplete and likewise produce a poorly resolved tree. Nonetheless, patterns of evolution in morphology and behavior can be investigated by using the molecular tree as a phylogenetic framework. Character optimization of the appearance of dorsal fur and preferred roosting sites maps consistently and are correlated on the phylogeny. This suggests an association of camouflage for bats with unusual appearance (two dorsal stripes in Rhynchonycteris and Saccopteryx, or pale fur in Cyttarops and Diclidurus) and roosting in exposed sites (tree trunks or under palm leaves). In contrast, the ancestral states for Old and New World emballonurids are typically uniform brown or black, and they usually roost in sheltered roosts such as caves and tree hollows. Emballonuridae is the only family of bats that has a sac-like structure in the wing propatagium, which is found in four New World genera. Mapping the wing sac character states onto the phylogeny indicates that wing sacs evolved independently within each genus and that there may be a phylogenetic predisposition for this structure. Ear orientation maps relatively consistently on the molecular phylogeny and is correlated to echolocation call parameters and foraging behavior, suggesting a phylogenetic basis for these character systems.  相似文献   
164.
165.
To interpret visual scenes, visual systems need to segment or integrate multiple moving features into distinct objects or surfaces. Previous studies have found that the perceived direction separation between two transparently moving random-dot stimuli is wider than the actual direction separation. This perceptual “direction repulsion” is useful for segmenting overlapping motion vectors. Here we investigate the effects of motion noise on the directional interaction between overlapping moving stimuli. Human subjects viewed two overlapping random-dot patches moving in different directions and judged the direction separation between the two motion vectors. We found that the perceived direction separation progressively changed from wide to narrow as the level of motion noise in the stimuli was increased, showing a switch from direction repulsion to attraction (i.e. smaller than the veridical direction separation). We also found that direction attraction occurred at a wider range of direction separations than direction repulsion. The normalized effects of both direction repulsion and attraction were the strongest near the direction separation of ∼25° and declined as the direction separation further increased. These results support the idea that motion noise prompts motion integration to overcome stimulus ambiguity. Our findings provide new constraints on neural models of motion transparency and segmentation.  相似文献   
166.
Plant Cell, Tissue and Organ Culture (PCTOC) - In vitro regeneration of date palm (Phoenix dactylifera L.) plants through somatic embryogenesis leads to the generation of somaclonal variants. The...  相似文献   
167.
In vitro fertilization has overcome infertility issues for many couples. However, achieving implantation of a viable embryo into the maternal endometrium remains a limiting step in optimizing pregnancy success. The molecular mechanisms which characterize the transient state of endometrial receptivity, critical in enabling embryo‐endometrial interactions, and proteins which underpin adhesion at the implantation interface, are limited in humans despite these temporally regulated processes fundamental to life. Hence, failure of implantation remains the “final frontier” in infertility. A human coculture model is utilized utilizing spheroids of a trophectoderm (trophoblast stem) cell line, derived from pre‐implantation human embryos, and primary human endometrial epithelial cells, to functionally identify “fertile” versus “infertile” endometrial epithelium based on adhesion between these cell types. Quantitative proteomics identified proteins associated with human endometrial epithelial receptivity (“epithelial receptome”) and trophectoderm adhesion (“adhesome”). As validation, key “epithelial receptome” proteins (MAGT‐1/CDA/LGMN/KYNU/PC4) localized to the epithelium of receptive phase (mid‐secretory) endometrium obtained from fertile, normally cycling women but is largely absent from non‐receptive (proliferative) phase tissues. Factors involved in embryo‐epithelium interaction in successive temporal stages of endometrial receptivity and implantation are demonstrated and potential targets for improving fertility are provided, enhancing potential to become pregnant either naturally or in a clinical setting.  相似文献   
168.
Elevated intraocular pressure (IOP) is a risk factor in glaucoma, a group of irreversible blinding diseases. Endogenous lipids may be involved in regulation of IOP homeostasis. We present comparative fold analysis of phospholipids and sphingolipids of aqueous humour and trabecular meshwork from human control vs primary open-angle glaucoma and mouse control (normotensive) vs ocular hypertensive state. The fold analysis in control vs disease state was based on ratiometric mass spectrometric data for above classes of lipids. We standardized in vitro assays for rapid characterization of lipids undergoing significant diminishment in disease state. Evaluation of lipids using in vitro assays helped select a finite number of lipids that may potentially expand cellular interstitial space embedded in an artificial matrix or increase fluid flow across a layer of cells. These assays reduced a number of lipids for initial evaluation using a mouse model, DBA/2J with spontaneous IOP elevation. These lipids were then used in other mouse models for confirmation of IOP lowering potential of a few lipids that were found promising in previous assessments. Our results provide selected lipid molecules that can be pursued for further evaluation and studies that may provide insight into their function.  相似文献   
169.
Asteraceae account for 10% of all flowering plant species, and 35%–40% of these are in five closely related tribes that total over 10 000 species. These tribes include Anthemideae, Astereae, Calenduleae, Gnaphalieae, and Senecioneae, which form one of two enormous clades within Subfamily Asteroideae. We took a phylogenomics approach to resolve evolutionary relationships among these five tribes. We sampled the nuclear and plastid genomes via HybSeq target enrichment and genome skimming, and recovered 74 plastid genes and nearly 1000 nuclear loci, known as Conserved Orthologous Sequences. We tested for conflicting support in both data sets and used network analyses to assess patterns of reticulation to explain the early evolutionary history of this lineage, which has experienced whole‐genome duplications and rapid radiations. We found concordance and conflicting support in both data sets and documented four ancient hybridization events. Due to the timing of the early radiation of this five‐tribe lineage, shortly before the Eocene–Oligocene extinction event (34 MYA), early lineages were likely lost, obscuring some details of their early evolutionary history.  相似文献   
170.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号