首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   37篇
  411篇
  2022年   2篇
  2021年   12篇
  2020年   4篇
  2019年   8篇
  2018年   9篇
  2017年   12篇
  2016年   10篇
  2015年   19篇
  2014年   30篇
  2013年   26篇
  2012年   25篇
  2011年   31篇
  2010年   20篇
  2009年   20篇
  2008年   18篇
  2007年   16篇
  2006年   17篇
  2005年   16篇
  2004年   30篇
  2003年   23篇
  2002年   17篇
  2001年   4篇
  2000年   2篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
  1927年   1篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
91.
92.
93.
Two pentapeptides, Ac-Tyr-Ile-His-Pro-Phe/Ile, were synthesized and shown to have angiotensin II AT2 receptor affinity and agonistic activity. Based on these peptides, a new series of 13 pseudopeptides was synthesized via introduction of five different turn scaffolds replacing the Tyr-Ile amino acid residues. Pharmacological evaluation disclosed subnanomolar affinities for some of these compounds at the AT2 receptor. Substitution of Phe by Ile in this series of ligands enhanced the AT2 receptor affinity of all compounds. These results suggest that the C-terminal amino acid residues can be elaborated on to enhance the AT2 receptor affinity in truncated Ang II analogues.  相似文献   
94.
The glutamate receptor gene, ionotropic N-methyl-d-aspartate 3A (GRIN3A), is one of the seven that code for subunits of N-methyl-d-aspartate receptors, which play an essential role at many synapses in the brain, regulating ion flow across membranes in response to glutamate signaling. In this study, we analyzed 25 single nucleotide polymorphisms (SNPs) within GRIN3A for association with nicotine dependence (ND), which was assessed by smoking quantity, heaviness of smoking index, and the Fagerström test for ND. Both individual SNP and haplotype association tests were performed in African-American (AA) and European-American (EA) samples as well as in the pooled sample consisting of 2,037 individuals from 602 nuclear families. Individual SNP analysis revealed significant associations of 5, 5, and 4 SNPs with at least one ND measure in the pooled, EA, and AA samples, respectively. Of them, SNPs rs17189632 and rs10121600 in the pooled sample and rs11788456 in the EA sample remained significant after correction for multiple testing. On the basis of the blocks determined with Haploview, we performed haplotype-based association analysis and found 2, 4, and 1 haplotype(s) that are significantly associated with at least one ND measure in the pooled, EA, and AA samples, respectively. Some of them remained significant after correction for multiple testing. We concluded that GRIN3A represents a strong candidate for involvement in the etiology of ND and warrants further investigation in independent samples.  相似文献   
95.
Rapid diagnostic tests (RDTs) have the potential to identify infectious diseases quickly, minimize disease transmission, and could complement and improve surveillance and control of infectious and vector-borne diseases during outbreaks. The U.S. Defense Threat Reduction Agency’s Joint Science and Technology Office (DTRA-JSTO) program set out to develop novel point-of-need RDTs for infectious diseases and deploy them for home use with no training. The aim of this formative study was to address two questions: 1) could community members in Iquitos, Peru and Phnom Penh, Cambodia competently use RDTs of different levels of complexity at home with visually based instructions provided, and 2) if an RDT were provided at no cost, would it be used at home if family members displayed febrile symptoms? Test kits with written and video (Peru only) instructions were provided to community members (Peru [n = 202]; Cambodia [n = 50]) or community health workers (Cambodia [n = 45]), and trained observers evaluated the competency level for each of the several steps required to successfully operate one of two multiplex RDTs on themselves or other consenting participant (i.e., family member). In Iquitos, >80% of residents were able to perform 11/12 steps and 7/15 steps for the two- and five-pathogen test, respectively. Competency in Phnom Penh never reached 80% for any of the 12 or 15 steps for either test; the percentage of participants able to perform a step ranged from 26–76% and 23–72%, for the two- and five-pathogen tests, respectively. Commercially available NS1 dengue rapid tests were distributed, at no cost, to households with confirmed exposure to dengue or Zika virus; of 14 febrile cases reported, six used the provided RDT. Our findings support the need for further implementation research on the appropriate level of instructions or training needed for diverse devices in different settings, as well as how to best integrate RDTs into existing local public health and disease surveillance programs at a large scale.  相似文献   
96.
Purinergic Signalling - A major component of slowly reversible hearing loss which develops with sustained exposure to noise has been attributed to release of ATP in the cochlea activating P2X2...  相似文献   
97.
The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein–protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides.The study of protein–protein interactions is crucial to understanding how cellular systems function because proteins act in concert through a highly organized set of interactions. Most cellular processes are carried out by large macromolecular assemblies and regulated through complex cascades of transient protein–protein interactions (1). In the past several years numerous high-throughput studies have pioneered the systematic characterization of protein–protein interactions in model organisms (24). Such studies mainly utilize two techniques: the yeast two-hybrid system, which aims at identifying binary interactions (5), and affinity purification combined with tandem mass spectrometry analysis for the identification of multi-protein assemblies (68). Together these led to a rapid expansion of known protein–protein interactions in human and other model organisms. Patche and Aloy recently estimated that there are more than one million interactions catalogued to date (9).But despite rapid progress, most current techniques allow one to determine only whether proteins interact, which is only the first step toward understanding how proteins interact. A more complete picture comes from characterizing the three-dimensional structures of protein complexes, which provide mechanistic insights that govern how interactions occur and the high specificity observed inside the cell. Traditionally the gold-standard methods used to solve protein structures are x-ray crystallography and NMR, and there have been several efforts similar to structural genomics (10) aiming to comprehensively solve the structures of protein complexes (11, 12). Although there has been accelerated growth of structures for protein monomers in the Protein Data Bank in recent years (11), the growth of structures for protein complexes has remained relatively small (9). Many factors, including their large size, transient nature, and dynamics of interactions, have prevented many complexes from being solved via traditional approaches in structural biology. Thus, the development of complementary analytical techniques with which to probe the structure of large protein complexes continues to evolve (1318).Recent developments have advanced the analysis of protein structures and interaction by combining cross-linking and tandem mass spectrometry (17, 1924). The basic idea behind this technique is to capture and identify pairs of amino acid residues that are spatially close to each other. When these linked pairs of residues are from the same protein (intraprotein cross-links), they provide distance constraints that help one infer the possible conformations of protein structures. Conversely, when pairs of residues come from different proteins (interprotein cross-links), they provide information about how proteins interact with one another. Although cross-linking strategies date back almost a decade (25, 26), difficulty in analyzing the complex MS/MS spectrum generated from linked peptides made this approach challenging, and therefore it was not widely used. With recent advances in mass spectrometry instrumentation, there has been renewed interest in employing this strategy to determine protein structures and identify protein–protein interactions. However, most studies thus far have been focused on purified protein complexes. With today''s mass spectrometers being capable of analyzing tens of thousands of spectra in a single experiment, it is now potentially feasible to extend this approach to the analysis of complex biological samples. Researchers have tried to realize this goal using both experimental and computational approaches. Indeed, a plethora of chemical cross-linking reagents are now available for stabilizing these complexes, and some are designed to allow for easier peptide identification when employed in concert with MS analysis (20, 27, 28). There have also been several recent efforts to develop computational methods for the automatic identification of linked peptides from MS/MS spectra (2936). However, because of the lack of large annotated training data, most approaches to date either borrow fragmentation models learned from unlinked, linear peptides or learn the fragmentation statistics from training data of limited size (30, 37), which might not generalize well across different samples. In some cases it is possible to generate relatively large training data, but it is often very labor intensive and involves hundreds of separate LC-MS/MS runs (36). Here, employing disulfide-bridged peptides as an example, we propose a novel method that uses a combinatorial peptide library to (a) efficiently generate a large mass spectral reference dataset for linked peptides and (b) use these data to automatically train our new algorithm, MXDB, which can efficiently and accurately identify linked peptides from MS/MS spectra.  相似文献   
98.
Three different types of compost, PM-5 (poultry manure compost), 338 (dairy cattle manure compost), and NVIRO-4 (alkaline-pH-stabilized dairy cattle manure compost), and irrigation water were inoculated with an avirulent strain of Salmonella enterica serovar Typhimurium at 10(7) CFU g(-1) and 10(5) CFU ml(-1), respectively, to determine the persistence of salmonellae in soils containing these composts, in irrigation water, and also on carrots and radishes grown in these contaminated soils. A split-plot block design plan was used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but with contaminated water applied) and five replicates for a total of 25 plots for each crop, with each plot measuring 1.8 x 4.6 m. Salmonellae persisted for an extended period of time, with the bacteria surviving in soil samples for 203 to 231 days, and were detected after seeds were sown for 84 and 203 days on radishes and carrots, respectively. Salmonella survival was greatest in soil amended with poultry compost and least in soil containing alkaline-pH-stabilized dairy cattle manure compost. Survival profiles of Salmonella on vegetables and soil samples contaminated by irrigation water were similar to those observed when contamination occurred through compost. Hence, both contaminated manure compost and irrigation water can play an important role in contaminating soil and root vegetables with salmonellae for several months.  相似文献   
99.
Microarrays have been widely used for the analysis of gene expression, but the issue of reproducibility across platforms has yet to be fully resolved. To address this apparent problem, we compared gene expression between two microarray platforms: the short oligonucleotide Affymetrix Mouse Genome 430 2.0 GeneChip and a spotted cDNA array using a mouse model of angiotensin II-induced hypertension. RNA extracted from treated mice was analyzed using Affymetrix and cDNA platforms and then by quantitative RT-PCR (qRT-PCR) for validation of specific genes. For the 11,710 genes present on both arrays, we assessed the relative impact of experimental treatment and platform on measured expression and found that biological treatment had a far greater impact on measured expression than did platform for more than 90% of genes, a result validated by qRT-PCR. In the small number of cases in which platforms yielded discrepant results, qRT-PCR generally did not confirm either set of data, suggesting that sequence-specific effects may make expression predictions difficult to make using any technique.  相似文献   
100.
Clyne PJ  Brotman JS  Sweeney ST  Davis G 《Genetics》2003,165(3):1433-1441
We describe a technique to tag Drosophila proteins with GFP at their native genomic loci. This technique uses a new, small P transposable element (the Wee-P) that is composed primarily of the green fluorescent protein (GFP) sequence flanked by consensus splice acceptor and splice donor sequences. We demonstrate that insertion of the Wee-P can generate GFP fusions with native proteins. We further demonstrate that GFP-tagged proteins have correct subcellular localization and can be expressed at near-normal levels. We have used the Wee-P to tag genes with a wide variety of functions, including transmembrane proteins. A genetic analysis of 12 representative fusion lines demonstrates that loss-of-function phenotypes are not caused by the Wee-P insertion. This technology allows the generation of GFP-tagged reagents on a genome-wide scale with diverse potential applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号