首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   52篇
  573篇
  2024年   1篇
  2023年   5篇
  2022年   18篇
  2021年   41篇
  2020年   10篇
  2019年   12篇
  2018年   16篇
  2017年   17篇
  2016年   24篇
  2015年   40篇
  2014年   39篇
  2013年   48篇
  2012年   61篇
  2011年   55篇
  2010年   34篇
  2009年   13篇
  2008年   18篇
  2007年   14篇
  2006年   19篇
  2005年   17篇
  2004年   16篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1989年   3篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1974年   2篇
  1970年   1篇
  1969年   1篇
  1956年   1篇
  1954年   1篇
  1935年   1篇
  1933年   1篇
  1928年   1篇
排序方式: 共有573条查询结果,搜索用时 0 毫秒
11.
RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that was first identified as a hypermutable gene in human B lineage lymphomas. RhoH remains in a constitutively active state and thus its effects are regulated by expression levels or post-translational modifications. Similar to other small GTPases, intracellular localization of RhoH is dependent upon the conserved “CAAX” box and surrounding sequences within the carboxyl (C) terminus. However, RhoH also contains a unique C-terminal “insert” domain of yet undetermined function. RhoH serves as adaptor molecule in T cell receptor signaling and RhoH expression correlates with the unfavorable prognostic marker ZAP70 in human chronic lymphocytic leukemia. Disease progression is attenuated in a Rhoh−/− mouse model of chronic lymphocytic leukemia and treatment of primary human chronic lymphocytic leukemia cells with Lenalidomide results in reduced RhoH protein levels. Thus, RhoH is a potential therapeutic target in B cell malignancies. In the current studies, we demonstrate that deletion of the insert domain (LFSINE) results in significant cytoplasmic protein accumulation. Using inhibitors of degradation pathways, we show that LFSINE regulates lysosomal RhoH uptake and degradation via chaperone-mediated autophagy. Whereas the C-terminal prenylation site is critical for ZAP70 interaction, subcellular localization and rescue of the Rhoh−/− T cell defect in vivo, the insert domain appears dispensable for these functions. Taken together, our findings suggest that the insert domain regulates protein stability and activity without otherwise affecting RhoH function.  相似文献   
12.
The epicardium and coronary vessels originate from progenitor cells in the proepicardium. Here we show that Tbx18, a T-box family member highly expressed in the proepicardium, controls critical early steps in coronary development. In Tbx18−/− mouse embryos, both the epicardium and coronary vessels exhibit structural and functional defects. At E12.5, the Tbx18-deficient epicardium contains protrusions and cyst-like structures overlying a disorganized coronary vascular plexus that contains ectopic structures resembling blood islands. At E13.5, the left and right coronary stems form correctly in mutant hearts. However, analysis of PECAM-1 whole mount immunostaining, distribution of SM22αlacZ/+ activity, and analysis of coronary vascular casts suggest that defective vascular plexus remodeling produces a compromised arterial network at birth consisting of fewer distributing conduit arteries with smaller lumens and a reduced capacity to conduct blood flow. Gene expression profiles of Tbx18/ hearts at E12.5 reveal altered expression of 79 genes that are associated with development of the vascular system including sonic hedgehog signaling components patched and smoothened, VEGF-A, angiopoietin-1, endoglin, and Wnt factors compared to wild type hearts. Thus, formation of coronary vasculature is responsive to Tbx18-dependent gene targets in the epicardium, and a poorly structured network of coronary conduit vessels is formed in Tbx18 null hearts due to defects in epicardial cell signaling and fate during heart development. Lastly, we demonstrate that Tbx18 possesses a SRF/CArG box dependent repressor activity capable of inhibiting progenitor cell differentiation into smooth muscle cells, suggesting a potential function of Tbx18 in maintaining the progenitor status of epicardial-derived cells.  相似文献   
13.
14.
15.
2-Ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is a member of the flavin and cysteine disulfide containing oxidoreductase family (DSOR) that catalyzes the unique reaction between atmospheric CO2 and a ketone/enolate nucleophile to generate acetoacetate. However, the mechanism of this reaction is not well understood. Here, we present evidence that 2-KPCC, in contrast to the well-characterized DSOR enzyme glutathione reductase, undergoes conformational changes during catalysis. Using a suite of biophysical techniques including limited proteolysis, differential scanning fluorimetry, and native mass spectrometry in the presence of substrates and inhibitors, we observed conformational differences between different ligand-bound 2-KPCC species within the catalytic cycle. Analysis of site-specific amino acid variants indicated that 2-KPCC-defining residues, Phe501-His506, within the active site are important for transducing these ligand induced conformational changes. We propose that these conformational changes promote substrate discrimination between H+ and CO2 to favor the metabolically preferred carboxylation product, acetoacetate.  相似文献   
16.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.  相似文献   
17.
Ligneous membranitis (LM) is a rare chronic inflammatory condition of the mucous membranes associated with plasminogen (encoded by PLG) deficiency in affected humans and dogs. In human, the condition is genetic in nature with numerous mutations and polymorphisms in PLG identified in affected individuals and related family members. The condition is uncommonly reported in dogs and, to date, no genetic studies have been performed. We identified related Scottish Terriers (littermates) with severe LM and unaffected relatives (sire, dam and a sibling from a previous litter). Plasma plasminogen activity was below normal in one affected dog but within normal reference intervals for the other. Sequencing of PLG from the affected dogs revealed a homozygous A>T single nucleotide polymorphism in an intron donor site (c.1256+2T>A). The related, unaffected dogs displayed heterozygous alleles at this position (c.1256+2T/A), whereas no mutation was detected in unaffected, non‐related control dogs. This is the first report to identify gene polymorphisms associated with LM in dogs.  相似文献   
18.
19.
Subpopulations of pathogenic or nonpathogenic Th17 cells were reported to develop when presensitized CD4 cells were activated with their target Ag during polarization by either IL-23 or IL-6 and TGF-β, respectively. In this study, we generated two Th17 subpopulations by using a system in which naive CD4 cells from TCR transgenic mice specific to hen egg lysozyme (HEL) are polarized with IL-6/TGF-β and, concurrently, are activated either with HEL presented by APCs, or with anti-CD3/CD28 Abs. Only the former cells were pathogenic, inducing inflammation in eyes expressing HEL. Naive CD4 cells activated by the anti-CD3/CD28 Abs acquired pathogenicity, however, when cocultured with HEL/APC. Importantly, the naive CD4 cells did not acquire pathogenicity when cocultured with APCs stimulated with LPS or when separated from the HEL-presenting cells by a semipermeable membrane. Unlike with presensitized Th17, soluble IL-23 does not participate in pathogenicity acquisition by naive CD4 cells; no pathogenicity was induced by adding IL-23 to cultures activated with anti-CD3/CD28 Abs. Furthermore, Abs against IL-23 or IL-23R did not inhibit acquisition of pathogenicity in cultures of naive CD4 cells activated by HEL/APC. Our data thus show that, unlike presensitized CD4 cells, naive CD4 cells polarized toward Th17 phenotype acquire pathogenicity only by direct interaction with APCs presenting the Ag, with no apparent involvement of soluble IL-23. We suggest that the Th17 lymphocytes derived from naive CD4 cells participate in pathogenic and other immune processes, along with the IL-23-dependent Th17 cells.  相似文献   
20.
Phylogenetic analyses based on nLSU and ITS sequence data indicate that the sequestrate genus Gigasperma is polyphyletic. Gigasperma cryptica, which is known only from New Zealand, has affinities with the Cortinariaceae whereas G. americanum and two additional undescribed taxa from western North America are derived from Lepiota within the Agaricaceae. The three North American taxa appear to be recently evolved and are closely related. They occur in similar environments and form a well supported clade indicating that adaptive radiation has occurred within this group of fungi. An independent genus with sequestrate fructifications, Cryptolepiota is proposed to accommodate the three species in this clade. Cryptolepiota microspora and C. mengei are described as new, and G. americanum is transferred to Cryptolepiota. Gigasperma cryptica is illustrated and compared with the species of Cryptolepiota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号