首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9706篇
  免费   800篇
  国内免费   673篇
  11179篇
  2024年   30篇
  2023年   133篇
  2022年   286篇
  2021年   499篇
  2020年   359篇
  2019年   423篇
  2018年   462篇
  2017年   276篇
  2016年   404篇
  2015年   588篇
  2014年   662篇
  2013年   681篇
  2012年   848篇
  2011年   781篇
  2010年   450篇
  2009年   392篇
  2008年   474篇
  2007年   381篇
  2006年   366篇
  2005年   310篇
  2004年   238篇
  2003年   187篇
  2002年   190篇
  2001年   205篇
  2000年   178篇
  1999年   175篇
  1998年   92篇
  1997年   89篇
  1996年   97篇
  1995年   103篇
  1994年   90篇
  1993年   66篇
  1992年   90篇
  1991年   77篇
  1990年   68篇
  1989年   53篇
  1988年   56篇
  1987年   37篇
  1986年   44篇
  1985年   54篇
  1984年   31篇
  1983年   17篇
  1982年   21篇
  1981年   11篇
  1979年   11篇
  1978年   14篇
  1977年   11篇
  1974年   12篇
  1969年   5篇
  1968年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
A cDNA for rabbit fast skeletal muscle troponin I (TnI) was isolated and sequenced. The clone contains a coding sequence predicting a 182-amino-acid protein with a molecular mass of 21,162 daltons. The translated sequence is different from that reported by Wilkinson and Grand (Wilkinson, J. M., and Grand, R. J. A. (1978) Nature 271, 31-35) in that Arg-153, Asp-154, and Leu-155 must be inserted into their original sequence. Amino acid sequencing of adult rabbit TnI confirmed this result. In order to investigate the role of the NH2 terminus of TnI in its biological activity, we have expressed a recombinant deletion mutant (TnId57), which lacks residues 1-57, in a bacterial expression system. Both wild type TnI (WTnI) and TnId57 inhibited acto-S1-ATPase activity and this inhibition could be fully reversed by troponin C (TnC) in the presence of Ca2+. Additionally both WTnI and TnId57 bound to an actin affinity column. Thus, both inhibitory actin binding and Ca(2+)-dependent neutralization by TnC were retained in TnId57. TnC affinity chromatography was used to compare the binding of TnI and TnId57 to TnC. Using this method, two types of interaction between TnC and TnI were observed: 1) one which is metal independent (or structural) and 2) one dependent on Ca2+ or Mg2+ binding to the Ca(2+)-Mg2+ sites of TnC. The same experiments with TnId57 demonstrated that the type 1 interaction was weakened, and type 2 binding was lost. This method also revealed an interaction between TnC and TnI which is dependent upon Ca2+ binding to the Ca(2+)-specific sites of TnC and which is retained in TnId57. Taken together, these results suggest that the NH2 terminus of TnI may constitute a Ca(2+)-Mg(2+)-dependent interaction site between TnC and TnI and play, in part, a structural role in maintaining the stability of the troponin complex while the COOH terminus of TnI contains a Ca(2+)-specific site-dependent interaction site for TnC as well as the previously demonstrated Ca(2+)-sensitive inhibitory and actin binding activities.  相似文献   
32.
The FLP protein of the 2-microns plasmid of yeast belongs to the integrase family of site-specific recombinases whose members form a covalent bond between a conserved tyrosine of the recombinase and the 3'-phosphoryl group at the site of cleavage. We have made an activated DNA substrate and have shown that FLP can promote efficient strand ligation without forming a covalent intermediate with the DNA substrate. The strand ligation activity of FLP is independent of its ability to cleave DNA. Since site-specific recombinases are members of the larger class of topoisomerases, these findings may be generally applicable to other members of this class of enzymes.  相似文献   
33.
The effect of nutritional limitations, such as phosphorus and carbon, on the production of l-lysine by Corynebacterium glutamicum was studied in continuous culture. We observed that phosphate-limited cultures at low growth rates were favourable to l-lysine production. l-Lysine was produced when a culture at low dilution rate (0.03 h–1) was established. A dilution rate of about 0.04 h–1 should be maintained in order to assure good productivity and an l-lysine yield of 0.53 g/g. Under carbon-limiting conditions the maintenance energy and growth yield of 0.03 g/g·g–1·h–1 and 0.41 g/g, respectively, have been obtained. Under these limiting conditions the l-lysine production was not favoured even at lower dilution rates.Correspondence to: N. Coello  相似文献   
34.
The alpha 1(VI) and alpha 2(VI) chains, two of the three constituent chains of type VI collagen, are highly similar in size and domain structure. They are encoded by single-copy genes residing in close proximity on human chromosome 21. To study the evolution of the type VI collagen genes, we have isolated and characterized genomic clones coding for the triple-helical domains of the human alpha 1(VI) and alpha 2(VI) chains, which consist of 336 and 335 amino acid residues, respectively. Nucleotide sequencing indicates that, in both genes, the exons are multiples of 9 bp in length (including 27, 36, 45, 54, 63, and 90 bp) except for those encoding for regions with triple-helical interruptions. In addition, the introns are positioned between complete codons. The most predominant exon size is 63 bp, instead of 54 bp as seen in the fibrillar collagen genes. Of particular interest is the finding that the exon structures of the alpha 1(VI) and alpha 2(VI) genes are almost identical. A significant deviation is that a segment of 30 amino acid residues is encoded by two exons of 54 and 36 bp in the alpha 1(VI) gene, but by a single exon of 90 bp in the alpha 2(VI) gene. The exon arrangement therefore provides further evidence that the two genes have evolved from tandem gene duplication. Furthermore, comparison with the previously reported gene structure of the chick alpha 2(VI) chain indicates that the exon structure for the triple-helical domain of the alpha 2(VI) collagen is strictly conserved between human and chicken.  相似文献   
35.
36.
T Pan  L P Freedman  J E Coleman 《Biochemistry》1990,29(39):9218-9225
The DNA binding domain of the mammalian glucocorticoid hormone receptor (GR) contains nine highly conserved cysteine residues, a conservation shared by the superfamily of steroid and thyroid hormone receptors. A fragment [150 amino acids (AA) in length] consisting of GR residues 407-556, containing within it the entire DNA binding domain (residues 440-525), has been overexpressed and purified from Escherichia coli previously. This fragment has been shown to contain 2.3 +/- 0.2 mol of Zn(II) per mole of protein [Freedman, L. P., Luisi, B. F., Korszun, Z. R., Basavappa, R., Sigler, P. B., & Yamamoto, K. R. (1988) Nature 334, 543]. Zn(II) [or Cd(II) substitution] has been shown to be essential for specific DNA binding. 113Cd NMR of a cloned construct containing the minimal DNA binding domain of 86 AA residues [denoted GR(440-525)] with 113Cd(II) substituted for Zn(II) identifies 2 Cd(II) binding sites by the presence of 2 113Cd NMR signals each of which integrates to 1 113Cd nucleus. The chemical shifts of these two sites, 704 and 710 ppm, suggest that each 113Cd(II) is coordinated to four isolated -S- ligands. Shared -S- ligands connecting the two 113Cd(II) ions do not appear to be present, since their T1s differ by 10-fold, 0.2 and 2.0 s, respectively. Addition of a third 113Cd(II) or Zn(II) to 113Cd2GR(440-525) results in occupancy of a third site, which introduces exchange modulation of the two original 113Cd NMR signals causing them to disappear. Addition of EDTA to the protein restores the original two signals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
37.
38.
Five modifications of the preparative procedure for isolating iron-molybdenum cofactor (FeMoco) from the molybdenum-iron (MoFe) protein of Azotobacter vinelandii nitrogenase have been developed. This variety of isolation methods has established that no single component of the original isolation protocol, i.e. Tris, Cl-, citrate, HPO4(2-), N,N-dimethylformamide, and N-methylformamide, is essential for the effective isolation and/or structural stability of FeMoco, although any of them may act as ligands to FeMoco when present. The acid-bse status (effective pH) of the extracting solvent is a key adjustable parameter in the isolation procedure. The new procedures produced FeMoco with yields, metal analysis, charge, EPR spectrum, and specific activity (after reconstituting crude extracts from A. vinelandii UW45 mutant cells) essentially identical with FeMoco isolated by the original procedure. After purification, FeMoco apparently contains molybdenum, iron, and sulfide in a 1:7:4 ratio with N-methylformamide as a ligand but no amino acid residues, common sugars, coenzyme A, or lipoic acid. Reaction with o-phenanthroline allows quantitation of both adventitious and FeMoco-associated iron. Correlations of total activity after UW45 reconstitution with molybdenum, total iron, and o-phenanthroline-resistant iron contents show that only the last gives a consistent relationship of 35 +/- 5 nmol of C2H4/min/ng atom of Fe. Both o-phenanthroline and EDTA interact with FeMoco to abolish its EPR signal in reactions reversible by additions of Fe2+ or Zn2+, respectively. These and related reactions point against the presence of an endogenous organic component in FeMoco and toward the presence of exogenous ligands and imply a relatively labile coordination sphere whose nature may be determinable by a systematic investigation.  相似文献   
39.
NH2OH-treated, non-water-splitting chloroplasts can oxidize H2O2 to O2 through Photosystem II at substantial rates (100--250 muequiv . h-1 . mg-1 chlorophyll with 5 mM H2O2) using 2,5-dimethyl-p-benzoquinone as an electron acceptor in the presence of the plastoquinone antagonist dibromothymoquinone. This H2O2 leads to Photosystem II leads to dimethylquinone reaction supports phosphorylation with a P/e2 ratio of 0.25--0.35 and proton uptake with H+/e values of 0.67 (pH 8)--0.85 (pH 6). These are close to the P/e2 value of 0.3--0.38 and the H+/e values of 0.7--0.93 found in parallel experiments for the H2O leads to Photosystem II leads to dimethylquinone reaction in untreated chloroplasts. Semi-quantitative data are also presented which show that the donor leads to Photosystem II leads to dibromothymoquinone (leads to O2) reaction can support phosphorylation when the donor used is a proton-releasing reductant (benzidine, catechol) but not when it is a non-proton carrier (I-, ferrocyanide).  相似文献   
40.
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号