首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2475篇
  免费   354篇
  2829篇
  2022年   18篇
  2021年   25篇
  2020年   21篇
  2019年   24篇
  2018年   33篇
  2017年   28篇
  2016年   54篇
  2015年   65篇
  2014年   72篇
  2013年   96篇
  2012年   129篇
  2011年   126篇
  2010年   75篇
  2009年   68篇
  2008年   108篇
  2007年   83篇
  2006年   75篇
  2005年   77篇
  2004年   75篇
  2003年   68篇
  2002年   76篇
  2001年   103篇
  2000年   106篇
  1999年   81篇
  1998年   48篇
  1997年   42篇
  1996年   65篇
  1995年   44篇
  1994年   46篇
  1993年   27篇
  1992年   79篇
  1991年   63篇
  1990年   56篇
  1989年   52篇
  1988年   54篇
  1987年   31篇
  1986年   35篇
  1985年   46篇
  1984年   36篇
  1983年   29篇
  1982年   19篇
  1980年   20篇
  1979年   27篇
  1978年   22篇
  1977年   32篇
  1973年   16篇
  1972年   25篇
  1971年   21篇
  1969年   18篇
  1966年   16篇
排序方式: 共有2829条查询结果,搜索用时 15 毫秒
61.
Habitat loss and modifications affect biodiversity, potentially contributing to outbreaks of infectious diseases. We evaluated if the patch sizeinfragmented areas of Atlantic Forest in southeastern Brazil influences the diversity of forest birds and consequently the prevalence of ticks on birds and the rickettsial infection of these ticks. During 2 years, we collected ticks from birds in 12 sites: four small forest patches (80–140 ha), four large ones (480–1,850 ha), and four forest control areas within the much larger Morro do Diabo State Park (~36,000 ha). A total of 1,725 birds were captured (81 species, 24 families), from which 223 birds were infested by 2,339 ticks of the genus Amblyomma, mostly by the species A. nodosum. Bird diversity and richness were higher in larger than smaller forest fragments. The prevalence of ticks on birds was inversely correlated with bird diversity and richness. Among 174 A. nodosum tested for rickettsial infection by polymerase chain reaction, 51 were found to be infected by Rickettsia bellii or Rickettsia parkeri. However, tick infection rates by Rickettsia spp. were not statistically different between forest patch sizes. The higher prevalence of ticks on birds in degraded patches might be caused by a dominance of a few generalist bird species in small patches, allowing an easier transmission of parasites among individuals. It could also be related to more favorable microclimatic conditions for the free-living stages of A. nodosum in smaller forest fragments.The higher burden of ticks on birds in smaller forest fragments is an important secondary effect of habitat fragmentation, possibly increasing the likelihood of Rickettsia contagion.  相似文献   
62.

Background

Tripeptidyl aminopeptidase I (TPPI) is a crucial lysosomal enzyme that is deficient in the fatal neurodegenerative disorder called classic late-infantile neuronal ceroid lipofuscinosis (LINCL). It is involved in the catabolism of proteins in the lysosomes. Recent X-ray crystallographic studies have provided insights into the structural/functional aspects of TPPI catalysis, and indicated presence of an octahedrally coordinated Ca2+.

Methodology

Purified precursor and mature TPPI were used to study inhibition by NBS and EDTA using biochemical and immunological approaches. Site-directed mutagenesis with confocal imaging technique identified a critical W residue in TPPI activity, and the processing of precursor into mature enzyme.

Principal Findings

NBS is a potent inhibitor of the purified TPPI. In mammalian TPPI, W542 is critical for tripeptidyl peptidase activity as well as autocatalysis. Transfection studies have indicated that mutants of the TPPI that harbor residues other than W at position 542 have delayed processing, and are retained in the ER rather than transported to lysosomes. EDTA inhibits the autocatalytic processing of the precursor TPPI.

Conclusions/Significance

We propose that W542 and Ca2+ are critical for maintaining the proper tertiary structure of the precursor proprotein as well as the mature TPPI. Additionally, Ca2+ is necessary for the autocatalytic processing of the precursor protein into the mature TPPI. We have identified NBS as a potent TPPI inhibitor, which led in delineating a critical role for W542 residue. Studies with such compounds will prove valuable in identifying the critical residues in the TPPI catalysis and its structure-function analysis.  相似文献   
63.
Little information exists about the establishment of native longleaf pine flatwoods species for use in restoration efforts and as buffers around natural areas in the southeastern United States. Composition of groundcover in these systems is dominated by perennial graminoid species. Vegetation in current buffers is generally non‐native turfgrass that can escape into natural areas, often reducing establishment and survival of native species. Where management objectives involve actively restoring native groundcover or reducing the probability of invasion by these non‐native turfgrasses, identification of native species and restoration methods is needed. We investigated seed germination and establishment of four species native to longleaf pine flatwoods in central Florida and one species native to the adjacent wetland communities. Paspalum setaceum, Panicum anceps, Eustachys petraea, and Eragrostis refracta were directly seeded, and P. distichum was planted as sprigs into three former P. notatum pastures. Irrigation, fertilization, weed control, and mowing treatments were assessed in terms of cover development of the sown species. Paspalum distichum developed the highest percent cover—over 80% in wet areas after 1 year. Mowing had mixed impacts depending on the species, and fertilization never significantly increased cover. Directly seeded species developed sparse cover (0–40%), probably as a result of drought conditions. However, E. petraea and E. refracta appeared more promising for use on rights‐of‐way when using high sowing rates. A second experiment conducted on a roadside included these two species and sprigged P. distichum. Both E. petraea and P. distichum developed more than 45% cover on the roadside. Establishment of these natives from seed or sprigs was significantly enhanced when site preparation effectively reduced the seedbank of other species present in the soil.  相似文献   
64.
Ag recognition by OVA-reactive OT-II (I-Ab restricted) and DO11.10 (I-Ad restricted) TCR-Tg CD4+ T cells after heterotopic transplantation of OVA transgene-expressing tracheal grafts was examined as a model of minor histocompatibility Ag (mHAg)-induced chronic allograft rejection. In response to airway allotransplantation with grafts expressing the OVA transgene, these TCR-Tg CD4+ T cells expressed the activation markers CD69 and CD44, demonstrated evidence of blastogenesis, underwent multiple rounds of cell division leading to their clonal expansion in the draining lymph node, and proceeded to differentiate to a effector/memory T cell phenotype based on a reduction in the expression of CD45RB. These mHAg-specific TCR-Tg CD4+ T cells responded equally well to fully MHC-mismatched tracheas and to class II-deficient allografts, demonstrating that donor mHAg recognition by recipient CD4+ T cells does not rely on Ag presentation by donor-derived APC. The activation of mHAg-specific TCR-Tg CD4+ T cells after their adoptive transfer into recipient mice given MHC-matched, but mHAg-disparate, airway allografts was associated with their movement into the allograft and the near uniform destruction of the transplanted airway tissue secondary to the development of obliterative airways disease. These results demonstrate that an activation of mHAg-reactive CD4+ T cells in the draining lymph node by recipient APC that indirectly express graft mHAg-derived peptide/class II MHC complexes precedes responder T cell proliferation and differentiation, and leads to the eventual migration of these alloreactive T cells to the transplanted airway tissue and the promotion of chronic graft rejection.  相似文献   
65.
The effect of selective vs. nonselective beta-blockade on fast-twitch [extensor digitorum longus (EDL)] and slow-twitch [soleus (SOL)] muscle enzyme activities following endurance training were characterized. Citrate synthase (CS), lactate dehydrogenase (LDH), and beta-hydroxyacyl-CoA dehydrogenase (HAD) activities were compared in SOL and EDL muscles of trained (T), metoprolol-trained (MT), propranolol-trained (PT), and sedentary (C) rats. Following 8 wk of treadmill running (1 h/day, 5 days/wk at approximately 30 m/min), LDH activity was depressed approximately 20% (P less than 0.05) in both SOL and EDL in only the PT rats, indicating inhibition of beta 2-mediated anaerobic glycolysis. EDL CS activity was similarly elevated in all three trained groups compared with sedentary controls. In SOL muscle, however, a drug attenuation effect was observed so that CS activity was increased only in the T (P less than 0.01) and MT (P less than 0.05) groups. HAD enzyme activity was increased somewhat (P less than 0.10) in SOL muscle in only the T group, but more so (P less than 0.05) in EDL in all three trained groups. The above findings suggest a training-induced selectivity effect not only with respect to beta 1-vs. beta 1-beta 2-blockers, but also with respect to muscle fiber type.  相似文献   
66.
MIC-3 is a recently identified gene family shown to exhibit increased root-specific expression following nematode infection of cotton plants that are resistant to root-knot nematode. Here, we cloned and sequenced MIC-3 genes from selected diploid and tetraploid cotton species to reveal sequence differences at the molecular level and identify chromosomal locations of MIC-3 genes in Gossypium species. Detailed sequence analysis and phylogenetic clustering of MIC-3 genes indicated the presence of multiple MIC-3 gene members in Gossypium species. Haplotypes of a MIC-3 gene family member were discovered by comparative analysis among consensus sequences across genotypes within an individual clade in the phylogram to overcome the problem of duplicated loci in the tetraploid cotton. Deficiency tests of the SNPs delimited six At-genome members of the MIC-3 family clustered to chromosome arm 4sh, and one Dt-genome member to chromosome 19. Clustering was confirmed by long-PCR amplification of the intergenic regions using At-genome-specific MIC-3 primer pairs. The clustered distribution may have been favored by selection for responsiveness to evolving disease and/or pest pressures, because large variants of the MIC-3 gene family may have been recovered from small physical areas by recombination. This could give a buffer against selection pressure from a broad range of pest and pathogens in the future. To our knowledge, these are the first results on the evolution of clustering and genome-specific haplotype members of a unique cotton gene family associated with resistant response against a major pathogen.  相似文献   
67.
68.
Myeloid differentiation factor 88 (MyD88) and MyD88-adaptor like (Mal)/Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) play a critical role in transducing signals downstream of the Toll-like receptor (TLR) family. While genetic ablation of the TLR4/MyD88 signaling axis in mice leads to pulmonary cell death and oxidative stress culminating in emphysema, the involvement of Mal, as well as TLR2 which like TLR4 also signals via MyD88 and Mal, in the pathogenesis of emphysema has not been studied. By employing an in vivo genetic approach, we reveal here that unlike the spontaneous pulmonary emphysema which developed in Tlr4−/− mice by 6 months of age, the lungs of Tlr2−/− mice showed no physiological or morphological signs of emphysema. A more detailed comparative analysis of the lungs from these mice confirmed that elevated oxidative protein carbonylation levels and increased numbers of alveolar cell apoptosis were only detected in Tlr4−/− mice, along with up-regulation of NADPH oxidase 3 (Nox3) mRNA expression. With respect to Mal, the architecture of the lungs of Mal−/− mice was normal. However, despite normal oxidative protein carbonylation levels in the lungs of emphysema-free Mal−/− mice, these mice displayed increased levels of apoptosis comparable to those observed in emphysematous Tlr4−/− mice. In conclusion, our data provide in vivo evidence for the non-essential role for TLR2, unlike the related TLR4, in maintaining the normal architecture of the lung. In addition, we reveal that Mal differentially facilitates the anti-apoptotic, but not oxidant suppressive, activities of TLR4 in the lung, both of which appear to be essential for TLR4 to prevent the onset of emphysema.  相似文献   
69.
We describe a general method for the preparation of λZAP II cDNA libraries from very small amounts (<50 mg) of plant tissue. We have achieved this by combining an efficient method for RNA extraction with a modified PCR protocol for the synthesis and amplification of cDNA. Using this protocol we have found it possible to generate cDNA libraries containing more than 106 clones from as little as 1 μg of total RNA.  相似文献   
70.
In this study we compare intracellular transport and processing of a recombinant glycoprotein in mammalian and insect cells. Detailed analysis of the N-glycosylation of recombinant human IFN-gamma by matrix-assisted laser-desorption mass spectrometry showed that the protein secreted by Chinese hamster ovary and baculovirus-infected insect Sf9 cells was associated with complex sialylated or truncated tri-mannosyl core glycans, respectively. However, the intracellular proteins were predominantly associated with high-mannose type oligosaccharides (Man-6 to Man-9) in both cases, indicating that endoplasmic reticulum to cis-Golgi transport is a predominant rate-limiting step in both expression systems. In CHO cells, although there was a minor intracellular subpopulation of sialylated IFN-gamma glycoforms identical to the secreted product (therefore associated with late-Golgi compartments or secretory vesicles), no other intermediates were evident. Therefore, anterograde transport processes in the Golgi stack do not limit secretion. In Sf9 insect cells, there was no direct evidence of post-ER glycan-processing events other than core fucosylation and de-mannosylation, both of which were glycosylation site-specific. To investigate the influence of nucleotide-sugar availability on cell-specific glycosylation, the cellular content of nucleotide-sugar substrates in both mammalian and insect cells was quantitatively determined by anion-exchange HPLC. In both host cell types, UDP-hexose and UDP-N-acetylhexosamine were in greater abundance relative to other substrates. However, unlike CHO cells, sialyltransferase activity and CMP-NeuAc substrate were not present in uninfected or baculovirus-infected Sf9 cells. Similar data were obtained for other insect cell hosts, Sf21 and Ea4. We conclude that although the limitations on intracellular transport and secretion of recombinant proteins in mammalian and insect cells are similar, N-glycan processing in Sf insect cells is limited, and that genetic modification of N-glycan processing in these insect cell lines will be constrained by substrate availability to terminal galactosylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号