首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   21篇
  271篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   10篇
  2018年   7篇
  2017年   5篇
  2016年   12篇
  2015年   11篇
  2014年   16篇
  2013年   26篇
  2012年   27篇
  2011年   24篇
  2010年   9篇
  2009年   8篇
  2008年   10篇
  2007年   13篇
  2006年   5篇
  2005年   7篇
  2004年   12篇
  2003年   10篇
  2002年   14篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有271条查询结果,搜索用时 0 毫秒
151.
Rates of diabetes are reaching epidemic levels. The key problem in both type 1 and type 2 diabetes is dysfunctional insulin signaling, either due to lack of production or due to impaired insulin sensitivity. A key feature of diabetic retinopathy in animal models is degenerate capillary formation. The goal of this present study was to investigate a potential mechanism for retinal endothelial cell apoptosis in response to hyperglycemia. The hypothesis was that hyperglycemia-induced TNFα leads to retinal endothelial cell apoptosis through inhibition of insulin signaling. To test the hypothesis, primary human retinal endothelial cells were grown in normal glucose (5 mM) or high glucose (25 mM) and treated with exogenous TNFα, TNFα siRNA or suppressor of cytokine signaling 3 (SOCS3) siRNA. Cell lysates were processed for Western blotting and ELISA analyses to verify TNFα and SOCS3 knockdown, as well as key pro- and anti-apoptotic factors, IRS-1, and Akt. Data indicate that high glucose culturing conditions significantly increase TNFα and SOCS3 protein levels. Knockdown of TNFα and SOCS3 significantly increases anti-apoptotic proteins, while decreasing pro-apoptotic proteins. Knockdown of TNFα leads to decreased phosphorylation of IRS-1(Ser307), which would promote normal insulin signaling. Knockdown of SOCS3 increased total IRS-1 levels, as well as decreased IR(Tyr960), both of which would inhibit retinal endothelial cell apoptosis through increased insulin signaling. Taken together, our findings suggest that increased TNFα inhibits insulin signaling in 2 ways: 1) increased phosphorylation of IRS-1(Ser307), 2) increased SOCS3 levels to decrease total IRS-1 and increase IR(Tyr960), both of which block normal insulin signal transduction. Resolution of the hyperglycemia-induced TNFα levels in retinal endothelial cells may prevent apoptosis through disinhibition of insulin receptor signaling.  相似文献   
152.
153.
Several lines of evidence show that in utero exposure to different toxicants has greater consequences than their exposure during adult life. This may be due to involvement of critical developmental stages, physiological immaturity and the long later-life span over which disease may initiate, develop and progress. The in vivo alkaline comet (single-cell gel electrophoresis) assay has been favoured by the scientific community for the evaluation of genotoxins. The objective of this study was to demonstrate the suitability of alkaline comet assay in detecting transplacental genotoxins using newborn mice. Here, we report the successful use of the comet assay in detecting multi-organ genotoxicity of known transplacental genotoxins in newborn mice. Three well known transplacental genotoxic agents, cyclophosphamide (CP), mitomycin-C (MMC) and zidovudine (AZT) were tested in pregnant Swiss mice. These compounds were administered in the late gestational period (16-20th days of pregnancy) and the comet assay was performed with lymphocytes, bone marrow, liver and kidney cells of newborn mice. Significant DNA damage was observed in all the tissues with tested transplacental genotoxins. The results of the comet assay were confirmed by the micronucleus (MN) assay of the peripheral blood of newborn mice. The results of this study provide sufficient evidence that the comet assay can be applied successfully for the detection of transplacental genotoxins in newborn mice.  相似文献   
154.
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a very promising new class of anti-HIV-1 agents that exhibit a multimodal mechanism of action by allosterically modulating IN multimerization and interfering with IN-lens epithelium-derived growth factor (LEDGF)/p75 binding. Selection of viral strains under ALLINI pressure has revealed an A128T substitution in HIV-1 IN as a primary mechanism of resistance. Here, we elucidated the structural and mechanistic basis for this resistance. The A128T substitution did not affect the hydrogen bonding between ALLINI and IN that mimics the IN-LEDGF/p75 interaction but instead altered the positioning of the inhibitor at the IN dimer interface. Consequently, the A128T substitution had only a minor effect on the ALLINI IC50 values for IN-LEDGF/p75 binding. Instead, ALLINIs markedly altered the multimerization of IN by promoting aberrant higher order WT (but not A128T) IN oligomers. Accordingly, WT IN catalytic activities and HIV-1 replication were potently inhibited by ALLINIs, whereas the A128T substitution in IN resulted in significant resistance to the inhibitors both in vitro and in cell culture assays. The differential multimerization of WT and A128T INs induced by ALLINIs correlated with the differences in infectivity of HIV-1 progeny virions. We conclude that ALLINIs primarily target IN multimerization rather than IN-LEDGF/p75 binding. Our findings provide the structural foundations for developing improved ALLINIs with increased potency and decreased potential to select for drug resistance.  相似文献   
155.
Low temperature or cold stress is one of the major constraints of rice production and productivity in temperate rice-growing countries and high-altitude areas in the tropics. Even though low temperature affects the rice plant in all stages of growth, the percent seed set is damaged severely by cold and this reduces the yield potential of cultivars significantly. In this study, a new source of cold-tolerant line, IR66160-121-4-4-2, was used as a donor parent with a cold-sensitive cultivar, Geumobyeo, to produce 153 F8 recombinant inbred lines (RILs) for quantitative trait locus (QTL) analysis. QTL analysis with 175 polymorphic simple sequence repeat (SSR) markers and composite interval mapping identified three main-effect QTLs (qPSST-3, qPSST-7, and qPSST-9) on chromosomes 3, 7, and 9. The SSR markers RM569, RM1377, and RM24545 were linked to the identified QTLs for cold tolerance with respect to percent seed set using cold-water (18–19°C) irrigation in the field and controlled air temperature (17°C) in the greenhouse. The total phenotypic variation for cold tolerance contributed by the three QTLs was 27.4%. RILs with high percent seed set under cold stress were validated with linked DNA markers and by haplotype analysis that revealed the contribution of progenitor genomes from the tropical japonica cultivar Jimbrug (Javanica) and temperate japonica cultivar Shen-Nung89-366. Three QTLs contributed by the cold-tolerant parent were identified which showed additive effect on percent seed set under cold treatment. This study demonstrated the utility of a new phenotyping method as well as the identification of SSR markers associated with QTLs for selection of cold-tolerant genotypes to improve temperate rice production.  相似文献   
156.
157.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, manifests discreet strategies to subvert host immune responses, which enable the pathogen to survive and multiply inside the macrophages. This problem is further worsened by the emergence of multidrug resistant mycobacterial strains, which make most of the anti-tuberculous drugs ineffective. It is thus imperative to search for and design better therapeutic strategies, including employment of new antibiotics. Recently, naturally produced antimicrobial molecules such as enzymes, peptides and their synthetic analogs have emerged as compounds with potentially significant therapeutical applications. Although, many antimicrobial peptides have been identified only very few of them have been tested against mycobacteria. A major limitation in using peptides as therapeutics is their sensitivity to enzymatic degradation or inactivity under certain physiological conditions such as relatively high salt concentration. Here, we show that NK-2, a peptide representing the cationic core region of the lymphocytic effector protein NK-lysin, and Ci-MAM-A24, a synthetic salt-tolerant peptide derived from immune cells of Ciona intestinalis, efficiently kill Mycobacterium smegmatis and Mycobacterium bovis-BCG. In addition, NK-2 and Ci-MAM-A24 showed a synergistic killing effect against M. smegmatis, no cytotoxic effect on mouse macrophages at bactericidal concentrations, and were even found to kill mycobacteria residing inside the macrophages. We also show that human placental lysosomal contents exert potent killing effect against mycobacteria under acidic and reducing growth conditions. Electron microscopic studies demonstrate that the lysosomal extract disintegrate bacterial cell membrane resulting in killing of mycobacteria.  相似文献   
158.
This study investigated the optimum thermochemical liquefaction (TCL) operating conditions for producing biocrude from Spirulina platensis. TCL experiments were performed at various temperatures (200-380 °C), holding times (0-120 min), and solids concentrations (10-50%). TCL conversion at 350 °C, 60 min holding time and 20% solids concentration produced the highest biocrude yield of 39.9% representing 98.3% carbon conversion efficiency. Light fraction biocrude (B1) appeared at 300 °C or higher temperatures and represented 50-63% of the total biocrude. Biocrude obtained at 350-380 °C had similar fuel properties to that of petroleum crude with energy density of 34.7-39.9 MJ kg−1 compared to 42.9 MJ kg−1 for petroleum crude. Biocrude from conversion at 300 °C or above had 71-77% elemental carbon, and 0.6-11.6% elemental oxygen and viscosities in the range 40-68 cP. GC/MS of biocrude reported higher hydrocarbons (C16-C17), phenolics, carboxylic acids, esters, aldehydes, amines, and amides.  相似文献   
159.
Secretory vesicle swelling is required for vesicular discharge during cell secretion. The Gαo‐mediated water channel aquaporin‐6 (AQP‐6) involvement in synaptic vesicle (SV) swelling in neurons has previously been reported. Studies demonstrate that in the presence of guanosine triphosphate (GTP), mastoparan, an amphiphilic tetradecapeptide from wasp venom, activates Go protein GTPase, and stimulates SV swelling. Stimulation of G proteins is believed to occur via insertion of mastoparan into the phospholipid membrane to form a highly structured α‐helix that resembles the intracellular loops of G protein‐coupled adrenergic receptors. Consequently, the presence of adrenoceptors and the presence of an endogenous β‐adrenergic agonist at the SV membrane is suggested. Immunoblot analysis of SV using β‐adrenergic receptor antibody, and vesicle swelling experiments using β‐adrenergic agonists and antagonists, demonstrate the presence of functional β‐adrenergic receptors at the SV membrane. Since a recent study shows vH+‐ATPase to be upstream of AQP‐6 in the pathway leading from Gαo‐mediated swelling of SV, participation of an endogenous β‐adrenergic agonist, in the binding and stimulation of its receptor to initiate the swelling cascade is demonstrated.  相似文献   
160.
Highlights? Genomic maps of 200 yeast regulators in normal and stress conditions provide a compendium for discovery ? SAGA assembly pathway is associated with more regulation than the TFIID pathway ? SAGA-linked regulators are distal, and TFIID-linked regulators are proximal to the promoter ? During heat shock, SAGA- and TFIID-linked regulators displayed distinct mobilization patterns  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号