首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   146篇
  国内免费   3篇
  2022年   9篇
  2021年   18篇
  2020年   22篇
  2019年   18篇
  2018年   32篇
  2017年   32篇
  2016年   27篇
  2015年   48篇
  2014年   56篇
  2013年   54篇
  2012年   47篇
  2011年   54篇
  2010年   42篇
  2009年   32篇
  2008年   31篇
  2007年   41篇
  2006年   25篇
  2005年   27篇
  2004年   23篇
  2003年   25篇
  2002年   38篇
  2001年   20篇
  2000年   18篇
  1999年   11篇
  1998年   6篇
  1997年   6篇
  1996年   7篇
  1994年   6篇
  1993年   14篇
  1992年   12篇
  1991年   5篇
  1990年   11篇
  1989年   7篇
  1988年   8篇
  1987年   10篇
  1986年   11篇
  1985年   5篇
  1984年   10篇
  1983年   4篇
  1982年   15篇
  1981年   4篇
  1980年   7篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1975年   12篇
  1972年   4篇
  1969年   3篇
  1900年   4篇
排序方式: 共有963条查询结果,搜索用时 48 毫秒
51.
52.
53.
Yoo SD  Cho YH  Sheen J 《Nature protocols》2007,2(7):1565-1572
The transient gene expression system using Arabidopsis mesophyll protoplasts has proven an important and versatile tool for conducting cell-based experiments using molecular, cellular, biochemical, genetic, genomic and proteomic approaches to analyze the functions of diverse signaling pathways and cellular machineries. A well-established protocol that has been extensively tested and applied in numerous experiments is presented here. The method includes protoplast isolation, PEG-calcium transfection of plasmid DNA and protoplast culture. Physiological responses and high-throughput capability enable facile and cost-effective explorations as well as hypothesis-driven tests. The protoplast isolation and DNA transfection procedures take 6-8 h, and the results can be obtained in 2-24 h. The cell system offers reliable guidelines for further comprehensive analysis of complex regulatory mechanisms in whole-plant physiology, immunity, growth and development.  相似文献   
54.
Plants possess innate Immune systems to prevent most potential Infections. The ancient and conserved innate immune responses are triggered by microbe-associated molecular patterns (MAMPs) and play important roles in broad-spectrum defenses. However, successful bacterial pathogens evolved type Ⅲ virulence effectors to suppress MAMP-medlated immunity. To survive, plants further developed highly specific resistance (R) genes to trigger gene-for-gene-mediated immunity and turn the virulent pathogens into avirulent ones. We summarize here the very recent advances in this dynamic coevolution of plantbacterium interaction.  相似文献   
55.
Wild tomatoes (Solanum peruvianum) are important genomic resources for tomato research and breeding. Development of a foreign DNA-free clustered regularly interspaced short palindromic repeat (CRISPR)-Cas delivery system has potential to mitigate public concern about genetically modified organisms. Here, we established a DNA-free CRISPR-Cas9 genome editing system based on an optimized protoplast regeneration protocol of S. peruvianum, an important resource for tomato introgression breeding. We generated mutants for genes involved in small interfering RNAs biogenesis, RNA-DEPENDENT RNA POLYMERASE 6 (SpRDR6), and SUPPRESSOR OF GENE SILENCING 3 (SpSGS3); pathogen-related peptide precursors, PATHOGENESIS-RELATED PROTEIN-1 (SpPR-1) and PROSYSTEMIN (SpProSys); and fungal resistance (MILDEW RESISTANT LOCUS O, SpMlo1) using diploid or tetraploid protoplasts derived from in vitro-grown shoots. The ploidy level of these regenerants was not affected by PEG-Ca2+-mediated transfection, CRISPR reagents, or the target genes. By karyotyping and whole genome sequencing analysis, we confirmed that CRISPR-Cas9 editing did not introduce chromosomal changes or unintended genome editing sites. All mutated genes in both diploid and tetraploid regenerants were heritable in the next generation. spsgs3 null T0 regenerants and sprdr6 null T1 progeny had wiry, sterile phenotypes in both diploid and tetraploid lines. The sterility of the spsgs3 null mutant was partially rescued, and fruits were obtained by grafting to wild-type (WT) stock and pollination with WT pollen. The resulting seeds contained the mutated alleles. Tomato yellow leaf curl virus proliferated at higher levels in spsgs3 and sprdr6 mutants than in the WT. Therefore, this protoplast regeneration technique should greatly facilitate tomato polyploidization and enable the use of CRISPR-Cas for S. peruvianum domestication and tomato breeding.

A DNA-free CRISPR-Cas9 genome editing tool based on an optimized protoplast regeneration protocol of wild tomato creates stable and inheritable diploid and tetraploid regenerants.  相似文献   
56.
57.
Two members of the aquaporin family, PM28A and a new one, PM28C, were isolated and shown to be the major constituents of spinach leaf plasma membranes. These two isoforms were identified and characterized by matrix-assisted laser desorption ionization-mass spectrometry. Edman degradation yielded the amino acid sequence of two domains belonging to the new isoform. PM28B, a previously described isoform, was not found in our preparations. Scanning transmission electron microscopy mass analysis revealed both PM28 isoforms to be tetrameric. Two types of particles, a larger and a smaller one, were found by transmission electron microscopy of negatively stained solubilized proteins and by atomic force microscopy of PM28 two-dimensional crystals. The ratio of larger to smaller particles observed by transmission electron microscopy and single particle analysis correlated with the ratio of PM28A to PM28C determined by matrix-assisted laser desorption ionization-mass spectrometry. The absence of PM28B and the ratio of PM28A to PM28C indicate that these plasma membrane intrinsic proteins are differentially expressed in spinach leaves. These findings suggest that differential expression of the various aquaporin isoforms may regulate the water flux across the plasma membrane, in addition to the known mechanism of regulation by phosphorylation.  相似文献   
58.
Phosphorylation can have profound effects on the properties of nuclear lamins. For instance, phosphorylation of specific sites on mammalian lamins drastically alters their propensity to polymerize. Relatively little is known about the effects of phosphorylation during interphase and about phosphorylation of invertebrate nuclear lamins. Here, using electrospray ionization tandem mass spectrometry, we determined the phosphorylation sites of both interphase and M-phase isoforms of nuclear lamin Dm from Drosophila melanogaster. Interphase lamins are phosphorylated at three sites: two of these sites (Ser25 and a site located between residues 430 and 438) flank the alpha-helical rod domain, whereas the third site (Ser595) is located close to the C-terminus. The M-phase lamin isoform is phosphorylated predominantly at Ser45, a residue contained within a sequence matching the consensus site for phosphorylation by cdc2 kinase. Our study confirms the important role in vivo for cdc2 kinase in M-phase disassembly of nuclear lamins and provides the basis for understanding Drosophila lamin phosphorylation during interphase.  相似文献   
59.
The beta-D-enantiomer of FDOC (2',3'-dideoxy-5-fluoro-oxacytidine) exhibits potent anti-HIV-1 activity. It was obtained in optically pure form by employing a tandem kinetic resolution/chiral salt crystallization protocol. In addition, conditions were developed that allowed the unwanted butyrate ester of the L-enantiomer of FDOC to be racemized. This material could then be recycled in future resolutions.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号