首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   12篇
  2022年   2篇
  2021年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   12篇
  2013年   6篇
  2012年   8篇
  2011年   10篇
  2010年   4篇
  2009年   9篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  1998年   2篇
  1996年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1973年   4篇
  1972年   5篇
  1971年   4篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1964年   4篇
  1961年   1篇
  1959年   2篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
  1952年   1篇
  1951年   1篇
  1941年   1篇
  1940年   1篇
  1939年   1篇
  1903年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
91.
Mosses dominate many northern ecosystems and their presence is integral to soil thermal and hydrological regimes which, in turn, dictate important ecological processes. Drivers, such as climate change and increasing herbivore pressure, affect the moss layer thus, assessment of the functional role of mosses in determining soil characteristics is essential. Field manipulations conducted in high arctic Spitsbergen (78° N), creating shallow (3 cm), intermediate (6 cm) and deep (12 cm) moss layers over the soil surface, had an immediate impact on soil temperature in terms of both average temperatures and amplitude of fluctuations. In soil under deep moss, temperature was substantially lower and organic layer thaw occurred 4 weeks later than in other treatment plots; the growing season for vascular plants was thereby reduced by 40%. Soil moisture was also reduced under deep moss, reflecting the influence of local heterogeneity in moss depth, over and above the landscape-scale topographic control of soil moisture. Data from field and laboratory experiments show that moss-mediated effects on the soil environment influenced microbial biomass and activity, resulting in warmer and wetter soil under thinner moss layers containing more plant-available nitrogen. In arctic ecosystems, which are limited by soil temperature, growing season length and nutrient availability, spatial and temporal variation in the depth of the moss layer has significant repercussions for ecosystem function. Evidence from our mesic tundra site shows that any disturbance causing reduction in the depth of the moss layer will alleviate temperature and moisture constraints and therefore profoundly influence a wide range of ecosystem processes, including nutrient cycling and energy transfer.  相似文献   
92.
93.
94.
Respiratory and cardiac activity of killer whales   总被引:2,自引:0,他引:2  
  相似文献   
95.
An emerging infectious facial cancer threatens Tasmanian devils with extinction. The disease is likely to occur across the range of the devil within 5 years. This urgent time frame requires management options that can be implemented immediately: the establishment of insurance populations, in captivity, wild-living on islands, and aiming for eradication in areas that can be isolated. The long-term options of the spontaneous or assisted evolution of resistance or development of a field-deliverable vaccine are unlikely to be available in time. The disease’s characteristic allograft transmission through intimate contact simplifies isolation of insurance populations and breaking transmission in suppression trials. Better knowledge of contact matrices in wild devils will help focus timing and demographic targets of removals. A metapopulation approach is needed that integrates captive and wild-living island and peninsula (disease suppression) populations to minimize the loss of genetic diversity over 50 years until either extinction and reintroduction can occur, resistance evolves or a field-deliverable vaccine is developed. Given the importance of the insurance populations and the low genetic diversity of devils, a conservative target for retention of 95% genetic diversity is recommended. Encouraging preliminary results of the first disease-suppression trial on a large peninsula show fewer late stage tumors and no apparent population decline. Limiting geographic spread or suppressing the disease on a broadscale are both unlikely to be feasible. Since the synergy of devil decline and impending fox establishment could have devastating consequences for Tasmanian wildlife, it is crucial to manage the dynamics of new and old predator species together.  相似文献   
96.
97.
98.
99.
The profiles of total lipids and of the molecular species of individual lipid classes were compared among corresponding lipoproteins of plasma and yolk of the laying hen. A close qualitative correspondence was found in the makeup of the molecular species of glycerophospholipids and triglycerides of the very low density lipoproteins and the high density lipoproteins of plasma and yolk. There was a lower proportion of the trienoic triglycerides and of the dienoic glycerophospholipids in the egg yolk than in the plasma lipoproteins, and the greatest differences (20-30%) were noted between the high density lipoproteins. It was also observed that the plasma high density lipoproteins lost their cholesteryl esters upon entering the yolk. On the basis of these and comparable analyses of the plasma lipoproteins of the nonlaying hen, it is concluded that the laying hen synthesizes specific lipoproteins for deposition in the yolk, and these are carried in plasma and selectively transferred to the developing ovum without significant equilibration with the other plasma lipoproteins.  相似文献   
100.
Our understanding of positive and negative plant interactions is primarily based on vascular plants, as is the prediction that facilitative effects dominate in harsh environments. It remains unclear whether this understanding is also applicable to moss–vascular plant interactions, which are likely to be influential in low-temperature environments with extensive moss ground cover such as boreal forest and arctic tundra. In a field experiment in high-arctic tundra, we investigated positive and negative impacts of the moss layer on vascular plants. Ramets of the shrub Salix polaris, herb Bistorta vivipara, grass Alopecurus borealis and rush Luzula confusa were transplanted into plots manipulated to contain bare soil, shallow moss (3 cm) and deep moss (6 cm) and harvested after three growing seasons. The moss layer had both positive and negative impacts upon vascular plant growth, the relative extent of which varied among vascular plant species. Deep moss cover reduced soil temperature and nitrogen availability, and this was reflected in reduced graminoid productivity. Shrub and herb biomass were greatest in shallow moss, where soil moisture also appeared to be highest. The relative importance of the mechanisms by which moss may influence vascular plants, through effects on soil temperature, moisture and nitrogen availability, was investigated in a phytotron growth experiment. Soil temperature, and not nutrient availability, determined Alopecurus growth, whereas Salix only responded to increased temperature if soil nitrogen was also increased. We propose a conceptual model showing the relative importance of positive and negative influences of the moss mat on vascular plants along a gradient of moss depth and illustrate species-specific outcomes. Our findings suggest that, through their strong influence on the soil environment, mat-forming mosses structure the composition of vascular plant communities. Thus, for plant interaction theory to be widely applicable to extreme environments such as the Arctic, growth forms other than vascular plants should be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号