首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   26篇
  169篇
  2022年   2篇
  2021年   3篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   7篇
  2014年   9篇
  2013年   14篇
  2012年   15篇
  2011年   10篇
  2010年   8篇
  2009年   2篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1991年   3篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1983年   5篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   5篇
  1969年   2篇
  1968年   1篇
  1962年   1篇
  1954年   1篇
  1945年   1篇
  1941年   1篇
  1924年   1篇
  1921年   1篇
排序方式: 共有169条查询结果,搜索用时 0 毫秒
101.
The interaction between the C-terminal tail of myosin A (MyoA) and its light chain, myosin A tail domain interacting protein (MTIP), is an essential feature of the conserved molecular machinery required for gliding motility and cell invasion by apicomplexan parasites. Recent data indicate that MTIP Ser-107 and/or Ser-108 are targeted for intracellular phosphorylation. Using an optimized MyoA tail peptide to reconstitute the complex, we show that this region of MTIP is an interaction hotspot using x-ray crystallography and NMR, and S107E and S108E mutants were generated to mimic the effect of phosphorylation. NMR relaxation experiments and other biophysical measurements indicate that the S108E mutation serves to break the tight clamp around the MyoA tail, whereas S107E has a smaller but measurable impact. These data are consistent with physical interactions observed between recombinant MTIP and native MyoA from Plasmodium falciparum lysates. Taken together these data support the notion that the conserved interactions between MTIP and MyoA may be specifically modulated by this post-translational modification.  相似文献   
102.
The GTPase Rab1 regulates endoplasmic reticulum-Golgi and early Golgi traffic. The guanine nucleotide exchange factor (GEF) or factors that activate Rab1 at these stages of the secretory pathway are currently unknown. Trs130p is a subunit of the yeast TRAPPII (transport protein particle II) complex, a multisubunit tethering complex that is a GEF for the Rab1 homologue Ypt1p. Here, we show that mammalian Trs130 (mTrs130) is a component of an analogous TRAPP complex in mammalian cells, and we describe for the first time the role that this complex plays in membrane traffic. mTRAPPII is enriched on COPI (Coat Protein I)-coated vesicles and buds, but not Golgi cisternae, and it specifically activates Rab1. In addition, we find that mTRAPPII binds to γ1COP, a COPI coat adaptor subunit. The depletion of mTrs130 by short hairpin RNA leads to an increase of vesicles in the vicinity of the Golgi and the accumulation of cargo in an early Golgi compartment. We propose that mTRAPPII is a Rab1 GEF that tethers COPI-coated vesicles to early Golgi membranes.  相似文献   
103.
The double-strand break DNA repair pathway has been implicated in breast carcinogenesis. We evaluated the association between 19 polymorphisms in seven genes in this pathway (XRCC2, XRCC3, BRCA2, ZNF350, BRIP1, XRCC4, LIG4) and breast cancer risk in two population-based studies in USA (3,368 cases and 2,880 controls) and Poland (1,995 cases and 2,296 controls). These data suggested weak associations with breast cancer risk for XRCC3 T241M and IVS7-14A>G (pooled odds ratio (95% confidence interval): 1.18 (1.04–1.34) and 0.85 (0.73–0.98) for homozygous variant vs wild-type genotypes, respectively), and for an uncommon variant in ZNF350 S472P (1.24 (1.05–1.48)), with no evidence for study heterogeneity. The remaining variants examined had no significant relationships to breast cancer risk. Meta-analyses of studies in Caucasian populations, including ours, provided some support for a weak association for homozygous variants for XRCC3 T241M (1.16 (1.04–1.30); total of 10,979 cases and 10,423 controls) and BRCA2 N372H (1.13 (1.10–1.28); total of 13,032 cases and 13,314 controls), and no support for XRCC2 R188H (1.06 (0.59–1.91); total of 8,394 cases and 8,404 controls). In conclusion, the genetic variants evaluated are unlikely to have a substantial overall association with breast cancer risk; however, weak associations are possible for XRCC3 (T241M and IVS7-14A>G), BRCA2 N372H, and ZNF350 S472P. Evaluation of potential underlying gene–gene interactions or associations in population subgroups will require even larger sample sizes.  相似文献   
104.
Nasopharyngeal carriage studies are needed to monitor changes in important bacterial pathogens in response to vaccination and antibiotics. Commercial swab transport followed by transfer to skim milk tryptone glucose glycerol broth for frozen storage is an option for studies of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis.  相似文献   
105.
Proteins establish and maintain a distinct intracellular localization by means of targeting, retention, and retrieval signals, ensuring most proteins reside predominantly in one cellular location. The enzymes involved in the maturation of lamin A present a challenge to this paradigm. Lamin A is first synthesized as a 74-kDa precursor, prelamin A, with a C-terminal CaaX motif and undergoes a series of posttranslational modifications including CaaX processing (farnesylation, aaX cleavage and carboxylmethylation), followed by endoproteolytic cleavage by Zmpste24. Failure to cleave prelamin A results in progeria and related premature aging disorders. Evidence suggests prelamin A is imported directly into the nucleus where it is processed. Paradoxically, the processing enzymes have been shown to reside in the cytosol (farnesyltransferase), or are ER membrane proteins (Zmpste24, Rce1, and Icmt) with their active sites facing the cytosol. Here we have reexamined the cellular site of prelamin A processing, and show that the mammalian and yeast processing enzymes Zmpste24 and Icmt exhibit a dual localization to the inner nuclear membrane, as well as the ER membrane. Our findings reveal the nucleus to be a physiologically relevant location for CaaX processing, and provide insight into the biology of a protein at the center of devastating progeroid diseases.  相似文献   
106.
Chemokine receptors (CCRs) play an essential role in the initiation of an innate immune host response. Several of these receptors have been shown to modulate the outcome of viral infections. The recent availability of complete genome sequences from a number of species provides a unique opportunity to analyze the evolution of the CCR genes. A phylogenetic analysis revealed that the CCR2 gene evolved in concert with the paralogous CCR5 gene, but not with another paralogous gene, CCR3, in the opossum, platypus, rabbit, guinea pig, cat, and rodent lineages. In addition, evidence of concerted evolution of the CCR2 and CCR5 genes was observed in chicken and lizard genomes. A unique CCR5/2 gene that originated by unequal crossing over between the CCR2 and CCR5 genes was detected in the domestic horse. The CCR2, CCR5, and CCR5/2 genes were mapped to ECA16q21 using fluorescent in situ hybridization (FISH). Single-nucleotide polymorphisms identified in the equine CCR5 gene and characterized within 5 horse breeds provide haplotype markers for future case/control studies investigating the genetic bases of horse susceptibility to infectious diseases.  相似文献   
107.
Emara MM  Liu H  Davis WG  Brinton MA 《Journal of virology》2008,82(21):10657-10670
Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.  相似文献   
108.
Here we report that Yip1p and Yif1p, two members of an integral membrane protein complex that bind to the Rab Ypt1p, are required for membrane fusion with the Golgi in vitro. To block fusion, anti-Yip1p or anti-Yif1p antibodies must be added before vesicles bud from the endoplasmic reticulum (ER). These antibodies do not block the packaging of Yip1p, Yif1p, or the soluble NSF attachment protein receptor (SNAREs) into vesicles. We propose that Yip1p and Yif1p perform a critical role in establishing the fusion competence of ER to Golgi vesicles at the time of budding. Consistent with this proposal, we observe that the Yip1p.Yif1p complex binds to the ER to Golgi SNAREs Bos1p and Sec22p, two components of the membrane fusion machinery.  相似文献   
109.
Nine potential proprietary sequestering agents consisting of 4 activated charcoals, 3 sodium bentonites, a calcium bentonite, and an esterified glucomannan were compared in a novel in vitro assay for aflatoxin B1 (AFB1) binding. Agents were evaluated in 10% methanol prepared as 1% stirred suspensions at pH 3, 7, 10 and pH-unadjusted, with or without AFB1 at 5 g/ml. All nine agents bound more than 95% of the 5 g of AFB1 in solution, regardless of pH. The sodium bentonites bound 98, 95, and 98% of the AFB1. The four activated charcoals bound over 99%, the calcium bentonite bound 98%, and the esterified glucomannan bound 97% of the AFB1 in solution. The results suggested that the sequestering agents tested here had sufficient potential to bind AFB1 at pH values commonly found in the gastrointestinal tracts of ruminants and other animals.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号