首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   29篇
  2023年   7篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   12篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   29篇
  2014年   32篇
  2013年   28篇
  2012年   22篇
  2011年   21篇
  2010年   9篇
  2009年   16篇
  2008年   10篇
  2007年   12篇
  2006年   13篇
  2005年   8篇
  2004年   8篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1995年   5篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
71.
1.  The cross-adapting effects of chemical backgrounds on the response of primary chemoreceptor cells to superimposed stimuli were studied using NH4 receptor cells, of known spectral tuning, from the lobster (Homarus americanus).
2.  Spectrum experiments: The spectral tuning of NH4 receptor cells was investigated using NH4Cl and 7 other compounds selected as the most stimulatory non-best compounds for NH4 cells from a longer list of compounds tested in previous studies. Based on their responses to the compounds tested, 3 spectral subpopulations of NH4 cells were revealed: NH4-Glu cells which responded second-best to Glutamate (Glu); NH4- Bet cells which responded second-best to Betaine (Bet); and pure NH4 cells, which responded to NH4C1 only (Fig. 1).
3.  Cross-adaptation experiments: Overall, cross-adaptation with Glu and Bet backgrounds caused suppression of response of NH4 receptor cells to various concentrations of NH4Cl. However, the different subpopulations of NH4 cells were affected differently: (a) The stimulus-response functions of NH4-Glu cells were significantly suppressed by both a 3 M (G3) and 300 M (G300) Glu backgrounds, (b) The stimulus-response functions of NH4-Bet cells was not affected by a 3 M (B3), but significantly suppressed by a 300M (B300) Bet background. (c) The stimulus-response functions of pure NH4 cells were not affected by any of the Glu or Bet backgrounds (Figs. 3, 4).
4.  The stimulus-response functions of 5 cells from all different subpopulations were enhanced by cross-adaptation with the G300 and B300 backgrounds (Fig. 4, Table 1).
5.  Whereas self-adaptation caused parallel shifts in stimulus-response functions (Borroni and Atema 1988), cross-adaptation caused a decrease in slope of stimulus-response functions. Implications of the results from cross- and self-adaptation experiments on NH4 receptor cells, for a receptor cell model are discussed.
  相似文献   
72.
A rapidly sedimenting DNA-protein complex was isolated from nuclear lysates in 2 M NaCl and characterized with regard to its polypeptide composition and the DNA-binding properties of the purified proteins. The complex consists of the nuclear matrix with attached DNA. Electrophoresis in SDS-polyacrylamide gels revealed two major and five minor polypeptide bands, mainly in the 60 to 75 kDa molecular weight region. The DNA-matrix complex dissociated into free DNA and proteins in the presence of 2 M NaCl and 5 M urea. The proteins could be purified by chromatography on hydroxyapatite and showed a strong tendency to reassociate at 0.15 M NaCl concentration in the absence of urea. DNA was bound to the reassociated proteins at 0.15 M NaCl concentration. Part of the DNA-protein complex was stable at 1 M NaCl concentration. The binding appeared to be random with regard to the DNA sequence.  相似文献   
73.
The vesicle-inducing protein in plastids 1 (Vipp1) was found to be involved in thylakoid membrane formation in chloroplasts and cyanobacteria. In contrast to chloroplasts, it has been suggested that in cyanobacteria the protein is only tightly associated with the cytoplasmic membrane. In the present study we analyze and describe the subcellular localization and the oligomeric organization of Vipp1 from the cyanobacterium Synechocystis PCC 6803. Vipp1 forms stable dimers and higher-ordered oligomers in the cytoplasm as well as at both the cytoplasmic and thylakoid membrane. Vipp1 oligomers are organized in ring structures with a variable diameter of 25–33 nm and corresponding calculated molecular masses of ∼1.6–2.2 MDa. Six different types of rings were found with an unusual 12–17-fold symmetrical conformation. The simultaneous existence of multiple types of rings is very unusual and suggests a special function of Vipp1. Involvement of diverse ring structures in vesicle formation is suggested.  相似文献   
74.
While protein interaction studies and protein network modeling come to the forefront, the isolation and identification of protein complexes in a cellular context remains a major challenge for plant science. To this end, a nondenaturing extraction procedure was optimized for plant whole cell matrices and the combined use of gel filtration and BN‐PAGE for the separation of protein complexes was studied. Hyphenation to denaturing electrophoresis and mass spectrometric analysis allows for the simultaneous identification of multiple (previously unidentified) protein interactions in single samples. The reliability and efficacy of the technique was confirmed (i) by the identification of well‐studied plant protein complexes, (ii) by the presence of nonplant interologs for several of the novel complexes (iii) by presenting physical evidence of previously hypothetical plant protein interactions and (iv) by the confirmation of found interactions using co‐IP. Furthermore practical issues concerning the use of this 2‐D BN/SDS‐PAGE display method for the analysis of protein–protein interactions are discussed.  相似文献   
75.
Caspase-3 and -7 are considered functionally redundant proteases with similar proteolytic specificities. We performed a proteome-wide screen on a mouse macrophage lysate using the N-terminal combined fractional diagonal chromatography technology and identified 46 shared, three caspase-3-specific, and six caspase-7-specific cleavage sites. Further analysis of these cleavage sites and substitution mutation experiments revealed that for certain cleavage sites a lysine at the P5 position contributes to the discrimination between caspase-7 and -3 specificity. One of the caspase-7-specific substrates, the 40 S ribosomal protein S18, was studied in detail. The RPS18-derived P6–P5′ undecapeptide retained complete specificity for caspase-7. The corresponding P6–P1 hexapeptide still displayed caspase-7 preference but lost strict specificity, suggesting that P′ residues are additionally required for caspase-7-specific cleavage. Analysis of truncated peptide mutants revealed that in the case of RPS18 the P4–P1 residues constitute the core cleavage site but that P6, P5, P2′, and P3′ residues critically contribute to caspase-7 specificity. Interestingly, specific cleavage by caspase-7 relies on excluding recognition by caspase-3 and not on increasing binding for caspase-7.Caspases, a family of evolutionarily conserved proteases, mediate apoptosis, inflammation, proliferation, and differentiation by cleaving many cellular substrates (13). The apoptotic initiator caspases (caspase-8, -9, and -10) are activated in large signaling platforms and propagate the death signal by cleavage-induced activation of executioner caspase-3 and -7 (4, 5). Most of the cleavage events occurring during apoptosis have been attributed to the proteolytic activity of these two executioner caspases, which can act on several hundreds of proteins (2, 3, 6, 7). The substrate degradomes of the two main executioner caspases have not been determined but their identification is important to gaining greater insight in their cleavage specificity and biological functions.The specificity of caspases was rigorously profiled by using combinatorial tetrapeptide libraries (8), proteome-derived peptide libraries (9), and sets of individual peptide substrates (10, 11). The results of these studies indicate that specificity motifs for caspase-3 and -7 are nearly indistinguishable with the canonical peptide substrate, DEVD, used to monitor the enzymatic activity of both caspase-3 and -7 in biological samples. This overlap in cleavage specificity is manifested in their generation of similar cleavage fragments from a variety of apoptosis-related substrates such as inhibitor of caspase-activated DNase, keratin 18, PARP,1 protein-disulfide isomerase, and Rho kinase I (for reviews, see Refs. 2, 3, and 7). This propagated the view that these two caspases have completely redundant functions during apoptosis. Surprisingly, mice deficient in one of these caspases (as well as mice deficient in both) have distinct phenotypes. Depending on the genetic background of the mice, caspase-3-deficient mice either die before birth (129/SvJ) or develop almost normally (C57BL/6J) (1214). This suggests that dynamics in the genetic background, such as increased caspase-7 expression, compensate for the functional loss of caspase-3 (15). In the C57BL/6J background, caspase-7 single deficient mice are also viable, whereas caspase-3 and -7 double deficient mice die as embryos, further suggesting redundancy (1214). However, because caspase-3 and -7 probably arose from gene duplication between the Cephalochordata-Vertebrata diversion (16), they might have acquired different substrate specificities during evolution. Caspase-3 and -7 do exhibit different activities on a few arbitrarily identified natural substrates, including BID, X-linked inhibitor of apoptosis protein, gelsolin, caspase-6, ataxin-7, and co-chaperone p23 (1720). In addition, caspase-3 generally cleaves more substrates during apoptosis than caspase-7 and therefore appears to be the major executioner caspase. Moreover, a recent report describing caspase-1-dependent activation of caspase-7, but not of caspase-3, in macrophages in response to microbial stimuli supports the idea of a non-redundant function for caspase-7 downstream of caspase-1 (21).Commercially available “caspase-specific” tetrapeptide substrates are widely used for specific caspase detection, but they display substantial promiscuity and cannot be used to monitor individual caspases in cells (22, 23). Detecting proteolysis by measuring the release of C-terminal fluorophores, such as 7-amino-4-methylcoumarin (amc), restricts the specificity of these peptide substrates to non-prime cleavage site residues, which may have hampered the identification of specific cleavage events. To address this limitation, a recently developed proteomics technique, called proteomic identification of protease cleavage sites, was used to map both non-prime and prime preferences for caspase-3 and -7 on a tryptic peptide library (9). However, no clear distinction in peptide recognition motifs between caspase-3 and -7 could be observed (9). Because not all classical caspase cleavage sites are processed (7), structural or post-translational higher order constraints are likely involved in steering the cleavage site selectivity. Peptide-based approaches generally overlook such aspects.We made use of the COFRADIC N-terminal peptide sorting methodology (2426) to profile proteolytic events of caspase-3 and -7 in a macrophage proteome labeled by triple stable isotope labeling by amino acids in cell culture (SILAC), which allowed direct comparison of peak intensities in peptide MS spectra and consequent quantification of N termini that are equally, preferably, or exclusively generated by the action of caspase-3 or -7 (26, 27). We identified 55 cleavage sites in 48 protein substrates, encompassing mutual, preferred, and unique caspase-3 and -7 cleavage sites.  相似文献   
76.
Group A human rotaviruses (RVs) are a major cause of severe gastroenteritis in infants and young children. Yet, aside from the genes encoding serotype antigens (VP7; G-type and VP4; P-type), little is known about the genetic make-up of emerging and endemic human RV strains. To gain insight into the diversity and evolution of RVs circulating at a single location over a period of time, we sequenced the eleven-segmented, double-stranded RNA genomes of fifty-one G3P[8] strains collected from 1974 to 1991 at Children''s Hospital National Medical Center, Washington, D. C. During this period, G1P[8] strains typically dominated, comprising on average 56% of RV infections each year in hospitalized children. A notable exception was in the 1976 and 1991 winter seasons when the incidence of G1P[8] infections decreased dramatically, a trend that correlated with a significant increase in G3P[8] infections. Our sequence analysis indicates that the 1976 season was characterized by the presence of several genetically distinct, co-circulating clades of G3P[8] viruses, which contained minor but significant differences in their encoded proteins. These 1976 lineages did not readily exchange gene segments with each other, but instead remained stable over the course of the season. In contrast, the 1991 season contained a single major clade, whose genome constellation was similar to one of the 1976 clades. The 1991 clade may have gained a fitness advantage after reassorting with as of yet unidentified RV strain(s). This study reveals for the first time that genetically distinct RV clades of the same G/P-type can co-circulate and cause disease. The findings from this study also suggest that, although gene segment exchange occurs, most reassortant strains are replaced over time by lineages with preferred genome constellations. Elucidation of the selective pressures that favor maintenance of RVs with certain sets of genes may be necessary to anticipate future vaccine needs.  相似文献   
77.
78.
79.
Mammalian cells are commonly used to produce recombinant protein therapeutics, but suffer from a high cost per mg of protein produced. There is therefore great interest in improving protein yields to reduce production cost. We present an entirely novel approach to reach this goal through direct engineering of the cellular translation machinery by introducing the R98S point mutation in the catalytically essential ribosomal protein L10 (RPL10‐R98S). Our data support that RPL10‐R98S enhances translation levels and fidelity and reduces proteasomal activity in lymphoid Ba/F3 and Jurkat cell models. In HEK293T cells cultured in chemically defined medium, knock‐in of RPL10‐R98S was associated with a 1.7‐ to 2.5‐fold increased production of four transiently expressed recombinant proteins and 1.7‐fold for one out of two stably expressed proteins. In CHO‐S cells, eGFP reached a 2‐fold increased expression under stable but not transient conditions, but there was no production benefit for monoclonal antibodies. The RPL10‐R98S associated production gain thus depends on culture conditions, cell type, and the nature of the expressed protein. Our study demonstrates the potential for using a ribosomal protein mutation for pharmaceutical protein production gains, and further research on how various factors influence RPL10‐R98S phenotypes can maximize its exploitability for the mammalian protein production industry.  相似文献   
80.
Boron (B) affects plant growth in soil at B doses (mg added B kg-1 soil) that appear in the range of natural background B concentrations. A study was set up to determine B bioavailability by testing B toxicity to plant as affected by soil properties and ageing after soil dosing. Nineteen soils (pH 4.4?C7.8) and 3 synthetic soils (sand-peat mixtures) were amended with 7 doses of H3BO3. Barley root elongation was determined immediately after B amendment and after 1 and 5 months ageing. Soil solution B concentrations increased linearly with added B concentrations with almost no detectable adsorption. In contrast, the ratio of aqua regia soluble B/soil solution B in unamended soils (no B added) was 10?C25 times higher than in B amended soils at similar aqua regia soluble B concentrations illustrating a much lower B availability in unamended soils. Soil solution B concentrations did not decrease by ageing. The toxic B doses or soil B concentrations that decreased barley root growth by 10% (EC10 values) varied about tenfold (respectively 3?C27 mg added B kg-1 and 5?C52 mg B kg-1) among soils. Corresponding thresholds in soil solution varied less than fourfold (16?C59 mg B l-1). Soil ageing for 5 months did not significantly change EC10 and EC50 values, expressed either as total soil B or as soil solution B, unless in 1 soil. Variability in EC10 and EC50 values was explained by various soil properties (soil moisture content, background B, %clay, cation exchange capacity), but covariance of these properties with the soil moisture content suggest that B dilution is the critical factor explaining B toxicity. It is concluded that effects of B amendments do not decrease by ageing and that soil solution B or B doses corrected for soil moisture content may be used as an index for B toxicity across different soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号