首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1060篇
  免费   94篇
  1154篇
  2023年   14篇
  2022年   17篇
  2021年   26篇
  2020年   12篇
  2019年   22篇
  2018年   33篇
  2017年   31篇
  2016年   50篇
  2015年   71篇
  2014年   59篇
  2013年   81篇
  2012年   92篇
  2011年   101篇
  2010年   44篇
  2009年   33篇
  2008年   54篇
  2007年   56篇
  2006年   38篇
  2005年   42篇
  2004年   41篇
  2003年   30篇
  2002年   20篇
  2001年   11篇
  2000年   5篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1991年   13篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   7篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1970年   3篇
  1969年   4篇
  1968年   4篇
排序方式: 共有1154条查询结果,搜索用时 15 毫秒
971.
972.
973.
The Tomato bushy stunt virus (TBSV)-encoded p19 protein (P19) is widely used as a robust tool to suppress RNA interference (RNAi) in various model organisms. P19 dimers appropriate 21-nucleotide (nt) duplex short interfering RNAs (siRNAs) generated by Dicer presumably to prevent programming of the RNA-induced silencing complex (RISC). In the context of virus infection, this model predicts that P19 mutants compromised for siRNA binding cannot prevent RISC-mediated degradation of TBSV RNA and thus reduce viral pathogenicity. To test this, we used P19/43 (R-->W), which is less pathogenic than wild-type P19 (wtP19), and P19/75-78 (RR-->GG), with pathogenicity properties (i.e., viral spread and symptom induction) comparable to those of a P19-null mutant. We demonstrate that P19/43 still suppresses RNAi-mediated viral RNA degradation in infected Nicotiana benthamiana, while P19/75-78 is unable to prevent this clearance of viral RNA, leading to an irreversible recovery phenotype. Gel filtration and immunoprecipitation assays show that at the onset of the infection, wtP19, P19/43, and P19/75-78 readily accumulate, and they form dimers. The wtP19 is stably associated with duplex approximately 21-nt TBSV siRNAs, while P19/75-78 does not bind these molecules, and the electrostatic interaction of P19/43 with siRNAs is perturbed for approximately 21-nt duplexes but not for longer siRNAs. This is the first clear demonstration of a direct correlation between a novel structurally orchestrated siRNA binding of an RNAi suppressor and its roles in viral pathogenesis. The findings should be particularly valuable for the RNAi field in general because the P19 mutants enable precise determination of siRNA appropriation effects.  相似文献   
974.
Increased activation of the major pro‐inflammatory NF‐κB pathway leads to numerous age‐related diseases, including chronic liver disease (CLD). Rapamycin, an inhibitor of mTOR, extends lifespan and healthspan, potentially via suppression of inflammaging, a process which is partially dependent on NF‐κB signalling. However, it is unknown if rapamycin has beneficial effects in the context of compromised NF‐κB signalling, such as that which occurs in several age‐related chronic diseases. In this study, we investigated whether rapamycin could ameliorate age‐associated phenotypes in a mouse model of genetically enhanced NF‐κB activity (nfκb1?/?) characterized by low‐grade chronic inflammation, accelerated aging and CLD. We found that, despite showing no beneficial effects in lifespan and inflammaging, rapamycin reduced frailty and improved long‐term memory, neuromuscular coordination and tissue architecture. Importantly, markers of cellular senescence, a known driver of age‐related pathology, were alleviated in rapamycin‐fed animals. Our results indicate that, in conditions of genetically enhanced NF‐κB, rapamycin delays aging phenotypes and improves healthspan uncoupled from its role as a suppressor of inflammation.  相似文献   
975.
976.
The superoxide (O2-)-forming NADPH oxidase of resting macrophages can be activated in a cell-free system by certain anionic amphiphiles, such as sodium dodecyl sulfate (SDS). O2- production requires the cooperation of membrane-associated and cytosolic components. The membrane component can be solubilized by octyl glucoside yielding a highly active oxidase preparation. High performance gel filtration of the solubilized oxidase on Superose 12 in the presence of 40 mM octyl glucoside leads to the total loss of enzymatic activity. This can be restored in previously inactive eluate fractions by "reconstitution" with N-ethylmaleimide or heat (60 degrees C)-inactivated total solubilized membrane. Oxidase activity, that becomes evident upon reconstitution, is eluted from Superose 12 with molecules in the Mr range of 300,000-71,000. The material with reconstitutive capacity is completely dissociated from the oxidase, eluting with molecules in the Mr range of 71,000-11,000. The Superose 12 elution profile of the material responsible for reconstitution coincides with that of membrane-derived phospholipid. Also, the reconstitutive capacity of total solubilized membrane and that of the Mr 71,000-11,000 region of the Superose eluate are recovered in a chloroform extract prepared by the method of Bligh and Dyer. It is concluded that loss of oxidase activity by gel filtration at a high octyl glucoside concentration is the consequence of delipidation. NADPH oxidase activity, revealed by reconstitution of Superose 12 fractions with exogenous phospholipid, correlates closely with the elution profile of cytochrome b559. Reconstitution of activity of delipidated oxidase can also be achieved with natural non-macrophage phospholipids and with synthetic phospholipids. Reconstitution of NADPH oxidase activity by lipids is governed by the following rules: (a) phospholipids are effective; lysophospholipids and neutral lipids are not; (b) phospholipids with polar heads represented by choline, ethanolamine, and serine, as well as cardiolipin, are effective; phosphatidylinositol is much less active; (c) phospholipids with unsaturated fatty acid residues are capable of reconstitution while saturated acyl residues do not confer activity; this specificity appears not to be related to the transition temperature of the phospholipids.  相似文献   
977.
The coupling between bacteria and heterotrophic nanoflagellates(HNF) was examined in nine lakes of low productivity for evidenceof the effects of various metazooplankton (i.e. rotifers, cladoceransand copepods) on this relationship. We considered the size ofcladocerans and, in contrast to most previous across-systemstudies, the three strata of the water column (i.e. epilimnion,metalimnion and hypolimnion). Rotifers were numerically dominantin all lakes and accounted for 45–84% of total metazooplanktonabundance, while the abundance of large cladocerans was relativelylow, ranging from 0.066 to 15.2 ind. L–1. The across-lakerelationship between bacteria and HNF was significant in thedeeper strata (meta- and hypolimnion) but not in the epilimnionand in the two groups of lakes separated on the basis of theiraverage number of large cladocerans (<5 and >5 ind. L–1,respectively). The results confirmed the negative impacts oflarge cladocerans on HNF, but also showed that rotifers, probablythrough grazing on HNF, may be an important factor causing variationin the bacteria–HNF relationship in unproductive waters.Quadratic models best described the relationships between metazooplanktonand the ratio of bacteria to HNF. This ratio seemed to be aresult of complex interactions between several factors, includingthe zooplankton composition and abundance and the depth of thelake. Indeed, this ratio significantly decreased across lakes,with increase in depth. In addition, shallower lakes (having<5 large cladocerans L–1 and fewer Polyarthra vulgaris)tended to have more bacteria and HNF and a higher ratio of bacteriato HNF than deeper lakes (which had >5 large cladoceransL–1 and substantial proportions of P. vulgaris). We suggestthat the epilimnion, metalimnion and hypolimnion of lakes betaken into account when analysing the bacteria–HNF relationshipas well as the cascading effects of zooplankton on microbialcommunities.  相似文献   
978.
The present study was designed to investigate the functional significance of KCNQ1-mediated K+ secretory fluxes in proximal tubular cells of the frog kidney. To this end, we investigated the effects on rapid depolarization and slow repolarization of the peritubular membrane potential after luminal addition of L-phenylalanine or L-alanine plus/minus KCNQ1 channel blockers. Perfusing the lumen with 10 mmol/L L-phenylalanine plus/minus luminal 293B, a specific blocker of KCNQ1, did not modify the rapid depolarization and the rate of slow repolarization. Perfusing the lumen with 10 mmol/L L-alanine plus/minus luminal HMR-1556, a more potent KCNQ1 channel blocker, did not also alter the rapid depolarization and the rate of slow repolarization. Pretreatment (1 h) of the lumen with HMR-1556 also failed to modify rapid depolarization and rate of slow repolarization upon luminal 10 mmol/L L-alanine. Perfusing the lumen with 1 mmol/L L-alanine plus/minus luminal HMR-1556 did not change the rapid depolarization and the rate of slow repolarization. The pretreatment (1 h) with luminal HMR-1556 did not modify the rapid depolarization and the rate of slow repolarization upon luminal 1 mmol/L L-alanine. The pretreatment (1 h) of the lumen with HMR-1556 did not change transference number for K+ of peritubular cell membrane. Finally, luminal barium blunted the rapid depolarization upon application of luminal 1 mmol/L L-alanine. RT-PCR showed that KCNQ1 mRNA was not expressed in frog kidney. In conclusion, the KCNQ1-dependent K+ secretory fluxes are absent in proximal tubule of frog kidney.  相似文献   
979.
The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs.  相似文献   
980.
Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号