首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5437篇
  免费   217篇
  国内免费   1篇
  2023年   22篇
  2022年   27篇
  2021年   51篇
  2020年   26篇
  2019年   50篇
  2018年   102篇
  2017年   95篇
  2016年   132篇
  2015年   125篇
  2014年   145篇
  2013年   243篇
  2012年   482篇
  2011年   690篇
  2010年   307篇
  2009年   97篇
  2008年   450篇
  2007年   420篇
  2006年   355篇
  2005年   331篇
  2004年   257篇
  2003年   249篇
  2002年   179篇
  2001年   67篇
  2000年   147篇
  1999年   75篇
  1998年   48篇
  1997年   14篇
  1996年   12篇
  1995年   16篇
  1994年   9篇
  1993年   13篇
  1992年   20篇
  1991年   15篇
  1990年   11篇
  1989年   12篇
  1987年   17篇
  1985年   20篇
  1984年   22篇
  1982年   16篇
  1981年   9篇
  1980年   17篇
  1979年   14篇
  1978年   13篇
  1977年   9篇
  1976年   17篇
  1975年   14篇
  1974年   18篇
  1973年   9篇
  1971年   10篇
  1967年   8篇
排序方式: 共有5655条查询结果,搜索用时 15 毫秒
61.
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E1 osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair.  相似文献   
62.
The Al(III)-salophen complex 1 exhibited strong spectroscopic changes specifically upon addition of polyG and GpG, while double stranded DNA and RNA, and single stranded polyA, polyU and polyC induced negligible spectral changes of 1. Titrations with mono-nucleotides yielded no spectroscopic changes, revealing that there must be at least two consecutive guanines in single stranded oligonucleotide structure for a measurable spectroscopic change of 1. Preliminary results show that 1 has moderate antiproliferative effect on a number of human tumour cell lines.  相似文献   
63.
Inoculation of leguminous seeds with selected rhizobial strains is practised in agriculture to ameliorate the plant yield by enhanced root nodulation and nitrogen uptake of the plant. However, effective symbiosis between legumes and rhizobia does not only depend on the capacity of nitrogen fixation but also on the entire nitrogen turnover in the rhizosphere. We investigated the influence of seed inoculation with two indigenous Sinorhizobium meliloti strains exhibiting different efficiency concerning plant growth promotion on nitrogen turnover processes in the rhizosphere during the growth of alfalfa. Quantification of six target genes (bacterial amoA, nirK, nirS, nosZ, nifH and archaeal amoA) within the nitrogen cycle was performed in rhizosphere samples before nodule formation, at bud development and at the late flowering stage. The results clearly demonstrated that effectiveness of rhizobial inocula is related to abundance of nifH genes in the late flowering phase of alfalfa. Moreover, other genes involved in nitrogen turnover had been affected by the inocula, e.g. higher numbers of amoA copies were observed during flowering when the more effective strain had been inoculated. However, the respective gene abundances differed overall to a greater extent between the three plant development stages than between the inoculation variants.  相似文献   
64.
Ohne ZusammenfassungDie vorliegenden Versuehe wurden während meines kurzen Aufenthalts im Pflanzenphysiologisehen Institut der Universität Wien ausgeführt. Herrn Prof. Dr. Karl Höfler und Herrn Dr. H. Kinzel danke ich sehönstens auch an dieser Stelle für die Untersfützung während der Arbeit.  相似文献   
65.
66.
Two commercial tomato cultivars were used to determine whether grafting could prevent decrease of fruit weight and quality under salt stress conditions. The cultivars Buran F1 and Berberana F1 were grafted onto rootstock ‘Maxifort’ and grown under three levels of elevated soil salinity (EC 3.80 dS m?1, 6.95 dS m?1 and 9.12 dS m?1). Fruit weight reduction of grafted plants was lower (about 20–30%) in comparison with non‐grafted ones. Salt stress at the second salinity level (EC 6.95 dS m?1) induced the highest alteration of examined growth and quality parameters. The total increase of phenols, flavonoids, ascorbate and lycopene content in the fruits of both grafted and non‐grafted plants for both cultivars had a similar trend and intensity, though some inter‐cultivar variation was observed. The possibility of grafting tomato plants to improve salt tolerance without fruit quality loss is discussed.  相似文献   
67.
Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non‐enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid‐bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non‐photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non‐photosynthetic cells relied on the ascorbate–glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non‐photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2O2 regulation. Together, these results imply different regulation of processes linked with H2O2 signalling at subcellular level. Thus, we propose green‐white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ.  相似文献   
68.
In previous studies it has been shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by altered gene expression. In this study an investigation was carried out into how different g conditions affect the proteome of such cells. For this purpose, callus cells were exposed to 8 g (centrifugation) and simulated microgravity (2-D clinorotation: fast rotating clinostat, yielding 0.0016 g at maximum; and 3-D random positioning) for up to 16 h. Extracts containing total soluble protein were subjected to 2-D SDS-PAGE. Image analysis of Sypro Ruby-stained gels showed that approximately 28 spots reproducibly and significantly (P <0.05) changed in amount after 2 h of hypergravity (18 up- and 10 down-regulated). These spots were analysed by electrospray ionization tandem mass spectrometry (ESI-MS/MS). In the case of 2-D clinorotation, 19 proteins changed in a manner similar to hypergravity, while random positioning affected only eight spots. Identified proteins were mainly stress related, and are involved in detoxification of reactive oxygen species, signalling, and calcium binding. Surprisingly, centrifugation and clinorotation showed homologies which were not detected for random positioning. The data indicate that simulation of weightlessness is different between clinorotation and random positioning.  相似文献   
69.
70.
The intracerebroventricular (icv) application of streptozotocin (STZ) in low dosage was used in 3-month-old rats to explore brain insulin system dysfunction. Three months following STZ icv treatment, the expression of insulin-1 and -2 mRNA was significantly reduced to 11% in hippocampus and to 28% in frontoparietal cerebral cortex, respectively. Insulin receptor (IR) mRNA expression decreased significantly in frontoparietal cerebral cortex and hippocampus (16% and 33% of control). At the protein/activity level, different abnormalities of protein tyrosine kinase activity (increase in hippocampus), total IR beta-subunit (decrease in hypothalamus) and phosphorylated IR tyrosine residues (increase) became apparent. The STZ-induced disturbance in learning and memory capacities was not abolished by icv application of glucose transport inhibitors known to prevent STZ-induced diabetes mellitus. The discrepancy between reduced IR gene expression and increase in both phosphorylated IR tyrosine residues/protein tyrosine kinase activity may indicate imbalance between phosphorylation/dephosphorylation of the IR beta-subunit causing its dysfunction. These abnormalities may point to a complex brain insulin system dysfunction after STZ icv application, which may lead to an increase in hyperphosphorylated tau-protein concentration. Brain insulin system dysfunction is discussed as possible pathological core in the generation of hyperphosphorylated tau protein as a morphological marker of sporadic Alzheimer's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号