首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   17篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   12篇
  2012年   8篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   7篇
  1998年   7篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
111.
Algorithms and software for support of gene identification experiments   总被引:1,自引:0,他引:1  
MOTIVATION: Gene annotation is the final goal of gene prediction algorithms. However, these algorithms frequently make mistakes and therefore the use of gene predictions for sequence annotation is hardly possible. As a result, biologists are forced to conduct time-consuming gene identification experiments by designing appropriate PCR primers to test cDNA libraries or applying RT-PCR, exon trapping/amplification, or other techniques. This process frequently amounts to 'guessing' PCR primers on top of unreliable gene predictions and frequently leads to wasting of experimental efforts. RESULTS: The present paper proposes a simple and reliable algorithm for experimental gene identification which bypasses the unreliable gene prediction step. Studies of the performance of the algorithm on a sample of human genes indicate that an experimental protocol based on the algorithm's predictions achieves an accurate gene identification with relatively few PCR primers. Predictions of PCR primers may be used for exon amplification in preliminary mutation analysis during an attempt to identify a gene responsible for a disease. We propose a simple approach to find a short region from a genomic sequence that with high probability overlaps with some exon of the gene. The algorithm is enhanced to find one or more segments that are probably contained in the translated region of the gene and can be used as PCR primers to select appropriate clones in cDNA libraries by selective amplification. The algorithm is further extended to locate a set of PCR primers that uniformly cover all translated regions and can be used for RT-PCR and further sequencing of (unknown) mRNA.   相似文献   
112.
Polymerase chain reaction (PCR) products were characterized for a repeated sequence family (designated "O-150") of the human filarial parasite Onchocerca volvulus. In phylogenetic inferences, the O-150 sequences clustered into closely related groups, suggesting that concerted evolution maintains sequence homology in this family. Using a novel mathematical model based on a nested application of an analysis of variance, we demonstrated that African rainforest and savannah strain parasite populations are significantly different. In contrast, parasites collected in the New World are indistinguishable from African savannah strains of O. volvulus. This finding supports the hypothesis that onchocerciasis was recently introduced into the New World, possibly as a result of the slave trade.   相似文献   
113.
The DNA-dependent protein kinase functions in the repair of DNA double strand breaks (DSBs) and in V(D)J recombination. To gain insight into the function of DNA-PK in this process we have carried out a mutation analysis of Ku80 and DNA-PKcs. Mutations at multiple sites within the N-terminal two thirds of Ku80 result in loss of Ku70/80 interaction, loss of DNA end-binding activity and inability to complement Ku80 defective cell lines. In contrast, mutations in the carboxy terminal region of the protein do not impair DNA end-binding activity but decrease the ability of Ku to activate DNA-PK. To gain insight into important functional domains within DNA-PKcs, we have analysed defective mutants, including the mouse scid cell line, and the rodent mutants, irs-20 and V-3. Mutational changes in the carboxy terminal region have been identified in all cases. Our results strongly suggest that the C-terminus of DNA-PKcs is required for kinase activity.  相似文献   
114.
115.
The DNA ligase IV.XRCC4 complex (LX) functions in DNA non-homologous-end joining, the main pathway for double-strand break repair in mammalian cells. We show that, in contrast to ligation by T4 ligase, the efficiency of LX ligation of double-stranded (ds) ends is critically dependent upon the length of the DNA substrate. The effect is specific for ds ligation, and LX/DNA binding is not influenced by the substrate length. Ku stimulates LX ligation at concentrations resulting in 1-2 Ku molecules bound per substrate, whereas multiply Ku-bound DNA molecules inhibit ds ligation. The combined footprint of DNA with Ku and LX bound is the sum of each individual footprint suggesting that the two complexes are located in tandem at the DNA end. Inhibition of Ku translocation by the presence of cis-platinum adducts on the DNA substrate severely inhibits ligation by LX. Fluorescence resonance energy transfer analysis using fluorophore-labeled Ku and DNA molecules showed that, as expected, Ku makes close contact with the DNA end and that addition of LX can disrupt this close contact. Finally, we show that recruitment of LX by Ku is impaired in an adenylation-defective mutant providing further evidence that LX interacts directly with the DNA end, possibly via the 5'-phosphate as shown for prokaryotic ligases. Taken together, our results suggest that, when LX binds to a Ku-bound DNA molecule, it causes inward translocation of Ku and that freedom to move inward on the DNA is essential to Ku stimulation of LX activity.  相似文献   
116.
Upon DNA damage, p53-binding protein 1 (53BP1) relocalizes to sites of DNA double-strand breaks and forms discrete nuclear foci, suggesting its role in DNA damage responses. We show that 53BP1 changed its localization from the detergent soluble to insoluble fraction after treatment of cells with x-ray, but not with ultraviolet or hydroxyurea. Either DNase or phosphatase treatment of the insoluble fraction released 53BP1 into the soluble fraction, showing that 53BP1 binds to chromatin in a phosphorylation-dependent manner after X-irradiation of cells. 53BP1 was retained at discrete nuclear foci in X-irradiated cells even after detergent extraction of cells, showing that the chromatin binding of 53BP1 occurs at sites of DNA double-strand breaks. The minimal domain for focus formation was identified by immunofluorescence staining of cells ectopically expressed with 53BP1 deletion mutants. This domain consisted of conserved Tudor and Myb motifs. The Tudor plus Myb domain possessed chromatin binding activity in vivo and bound directly to both double-stranded and single-stranded DNA in vitro. This domain also stimulated end-joining by DNA ligase IV/Xrcc4, but not by T4 DNA ligase in vitro. We conclude that 53BP1 has the potential to participate directly in the repair of DNA double-strand breaks.  相似文献   
117.
118.
Around 15-20 hereditary disorders associated with impaired DNA damage response mechanisms have been previously described. The range of clinical features associated with these disorders attests to the significant role that these pathways play during development. Recently, three new such disorders have been reported extending the importance of the damage response pathways to human health. LIG4 syndrome is conferred by hypomorphic mutations in DNA ligase IV, an essential component of DNA non-homologous end-joining (NHEJ), and is associated with pancytopaenia, developmental and growth delay and dysmorphic facial features. Radiosensitive severe combined immunodeficiency (RS-SCID) is caused by mutations in Artemis, a protein that plays a subsidiary role in non-homologous end-joining although it is not an essential component. RS-SCID is characterised by severe combined immunodeficiency but patients have no overt developmental abnormalities. ATR-Seckel syndrome is caused by mutations in ataxia telangiectasia and Rad3 related protein (ATR), a component of a DNA damage signalling pathway. ATR-Seckel syndrome patients have dramatic microcephaly and marked growth and developmental delay. The clinical features of these patients are considered in the light of the function of the defective protein.  相似文献   
119.
DNA ligase IV functions in DNA non-homologous end-joining, in V(D)J recombination, and during brain development. We previously reported a homozygous mutation (R278H) in DNA ligase IV in a developmentally normal leukemia patient who overresponded to radiotherapy. The impact of this hypomorphic mutation has been evaluated using cellular, biochemical, and structural approaches. Structural modeling using T7 DNA ligase predicts that the activity and conformational stability of the protein is likely to be impaired. We show that wild type DNA ligase IV-Xrcc4 is an efficient double-stranded ligase with distinct optimal requirements for adenylate complex formation versus rejoining. The mutation impairs the formation of an adenylate complex as well as reducing the rejoining activity. Additionally, it imparts temperature-sensitive activity to the protein consistent with the predictions of the structural modeling. At the cellular level, the mutation confers a unique V(D)J recombination phenotype affecting the fidelity of signal joint formation with little effect on the frequency of the reaction. These findings suggest that hypomorphic mutations in ligase IV may allow normal development but confer marked radiosensitivity.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号