首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16607篇
  免费   1366篇
  国内免费   4篇
  17977篇
  2023年   50篇
  2022年   151篇
  2021年   280篇
  2020年   128篇
  2019年   222篇
  2018年   188篇
  2017年   205篇
  2016年   390篇
  2015年   630篇
  2014年   752篇
  2013年   909篇
  2012年   1263篇
  2011年   1323篇
  2010年   845篇
  2009年   703篇
  2008年   1109篇
  2007年   1159篇
  2006年   980篇
  2005年   980篇
  2004年   942篇
  2003年   955篇
  2002年   867篇
  2001年   158篇
  2000年   114篇
  1999年   160篇
  1998年   210篇
  1997年   151篇
  1996年   125篇
  1995年   123篇
  1994年   124篇
  1993年   126篇
  1992年   131篇
  1991年   109篇
  1990年   96篇
  1989年   83篇
  1988年   81篇
  1987年   75篇
  1986年   67篇
  1985年   95篇
  1984年   106篇
  1983年   90篇
  1982年   84篇
  1981年   103篇
  1980年   90篇
  1979年   54篇
  1978年   56篇
  1977年   63篇
  1976年   52篇
  1975年   33篇
  1974年   28篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
141.
Summary Electromyograms were recorded from leg muscles of the cockroachGromphadorhina during walking and righting under free-ranging and tethered conditions. Two muscles which are essentially synergistic during walking become antagonistic during righting (Fig. 3, 4). This explains in part the difference in the direction of the leg stroke in the two behaviors (Fig. 2). Other properties of the muscle activity are very similar during the two rhythms: the same motoneurons appear to be active (Fig. 5, 6); cycle frequencies are the same; the burst length of one motoneuron studied varies with burst frequency in a generally similar manner in both behaviors (Fig. 7); inter-leg coordination is the same (Fig. 9); and transganglionic coupling characteristic of walking can occur while a leg on one side is engaged in walking, and its contralateral homologue is engaged in righting (Fig. 10). Although other properties of the leg rhythms are different in walking and righting, these differences appear to result from dissimilarities in sensory feedback. It is concluded that although the two leg rhythms are superficially quite different, the underlying central neuronal rhythms are very similar, and possibly result from activity in the same central oscillatory cell or circuit.We thank Carol Smith for technical assistance. This work was supported by NIH grant #NS09083-05. Computation was done at the New York State Veterinary College Computer Facility which is supported by NIH grant RR 326.  相似文献   
142.
Summary We show here that plant cells are sensitive to the antibiotic hygromycin-B4. We also show that a chimaeric gene consisting of the nopaline synthase (nos) gene regulatory elements and the E. coli derived hygromycin phosphotransferase (hpt) gene, when transferred to plants' cells, confers resistance to hygromycin B. The chimaeric nos-hpt gene enables efficient selection of DNA transfer to plant cells when used in conjunction with Ti plasmid-derived binary vectors in cocultivation experiments.  相似文献   
143.
144.
Schlosser K  Gu J  Lam JC  Li Y 《Nucleic acids research》2008,36(14):4768-4777
Herein, we sought new or improved endoribonucleases based on catalytic DNA molecules known as deoxyribozymes. The current repertoire of RNA-cleaving deoxyribozymes can cleave nearly all of the 16 possible dinucleotide junctions with rates of at least 0.1/min, with the exception of pyrimidine–pyrimidine (pyr–pyr) junctions, which are cleaved 1–3 orders of magnitude slower. We conducted four separate in vitro selection experiments to target each pyr–pyr dinucleotide combination (i.e. CC, UC, CT and UT) within a chimeric RNA/DNA substrate. We used a library of DNA molecules containing only 20 random-sequence nucleotides, so that all possible sequence permutations could be sampled in each experiment. From a total of 245 clones, we identified 22 different sequence families, of which 21 represented novel deoxyribozyme motifs. The fastest deoxyribozymes exhibited kobs values (single-turnover, intermolecular format) of 0.12/min, 0.04/min, 0.13/min and 0.15/min against CC, UC, CT and UT junctions, respectively. These values represent a 6- to 8-fold improvement for CC and UC junctions, and a 1000- to 1600-fold improvement for CT and UT junctions, compared to the best rates reported previously under identical reaction conditions. The same deoxyribozymes exhibited ~1000-fold lower activity against all RNA substrates, but could potentially be improved through further in vitro evolution and engineering.  相似文献   
145.
Post-translational modifications (PTMs) of histones play an important role in many cellular processes, notably gene regulation. Using a combination of mass spectrometric and immunobiochemical approaches, we show that the PTM profile of histone H3 differs significantly among the various model organisms examined. Unicellular eukaryotes, such as Saccharomyces cerevisiae (yeast) and Tetrahymena thermophila (Tet), for example, contain more activation than silencing marks as compared with mammalian cells (mouse and human), which are generally enriched in PTMs more often associated with gene silencing. Close examination reveals that many of the better-known modified lysines (Lys) can be either methylated or acetylated and that the overall modification patterns become more complex from unicellular eukaryotes to mammals. Additionally, novel species-specific H3 PTMs from wild-type asynchronously grown cells are also detected by mass spectrometry. Our results suggest that some PTMs are more conserved than previously thought, including H3K9me1 and H4K20me2 in yeast and H3K27me1, -me2, and -me3 in Tet. On histone H4, methylation at Lys-20 showed a similar pattern as H3 methylation at Lys-9, with mammals containing more methylation than the unicellular organisms. Additionally, modification profiles of H4 acetylation were very similar among the organisms examined.  相似文献   
146.
147.
Sedimentation equilibrium studies are used to establish that a new pattern for the self-association of zinc-free insulin in solution is applicable over a wide range of conditions of pH, ionic strength and temperature. In this pattern, which is based on information from the existing literature on the X-ray crystal structure of insulin, the insulin monomer is viewed as having two distinct faces both capable of self-interaction. Sedimentation equilibrium experiments were analysed using expressions formulated for this association pattern that describe the dependence of weight average molecular weight and monomer concentration on total protein concentration. It has thereby been possible to obtain values for the two association constants which govern the system for each set of conditions studied, due allowance having been made for composition dependent non-ideality effects. Furthermore, by relating the pH, temperature and ionic strength dependence of the association constants with properties of various amino acid residues on the surface of the insulin monomer, it has also been possible to assign tentatively each constant to a particular reaction domain.  相似文献   
148.
In epoxide hydrolase from Agrobacterium radiobacter (EchA), phenylalanine 108 flanks the nucleophilic aspartate and forms part of the substrate-binding pocket. The influence of mutations at this position on the activity and enantioselectivity of the enzyme was investigated. Screening for improved enantioselectivity towards para-nitrophenyl glycidyl ether (pNPGE) using spectrophotometric progress curve analysis yielded five different mutants with 3- to 7-fold improved enantioselectivity. The increase in enantioselectivity was in most cases the result of an enhanced catalytic efficiency toward the preferred enantiomer. Several mutations at position F108 resulted in a higher activity toward cis-disubstituted meso-epoxides, which were converted to a single product enantiomer. Mutant F108C converted cis-2,3-epoxybutane to (2R,3R)-2,3-butanediol of >99% ee with a 7-fold improved activity, and mutant F108A hydrolyzed cyclohexene oxide to (1R,2R)-1,2-cyclohexanediol of >99% ee with a more than 150-fold higher activity than wild-type enzyme. It is concluded that single amino acid substitutions in the active site of epoxide hydrolase can result in enzyme variants with catalytic properties that are suitable for preparative scale production of (S)-epoxides and chiral vicinal diols in high yield and with excellent ee.  相似文献   
149.
A maize cDNA clone was isolated by virtue of its intense hybridization to total maize genomic DNA, indicating homology to highly repetitive sequences. Genomic homologues were identified and subcloned from an adh1-bearing maize yeast artificial chromosome (YAC). Sequencing revealed that the expressed sequence was part of a Ty3-gypsy-type retrotransposon. We discovered and sequenced two complete retrotransposons of this family, and named them Cinful elements because they are members of a family of maize retrotransposons including Zeon-1 and the first plant transposable element sequenced, the solo long terminal repeat (LTR) called Cin1. All are defective, as Cinful-1 and Cinful-2 elements lack gag and Zeon-1 lacks pol homology. Despite the apparent lack of an intact "autonomous" element, the Cinful family has expanded to a copy number of about 18 000, representing just under 9% of the maize genome. Both point mutations and major rearrangements, including possible gene acquisition, differentiate members of the Cinful family. Cinful family members were found to have an unusual feature that we also observed in two other Ty3-class retrotransposons of teosinte and tobacco: related tandem repeats that separate their internal domains with a gag- or pol-containing homology from a 3' segment of unknown function. The conserved and variable features identified provide insights into the origin, mutational history, and functional components of this major constituent of the maize genome.  相似文献   
150.
The use of potency control testing is a valuable tool for testing the actual relative strength of manufactured assembly lots of vaccine. Biological-based manufacturing methods are inherently variable and potency testing is a tool to ensure lot-to-lot consistency of commercial vaccines. A strong historical link to clinical efficacy has been established where correlation to efficacy and adequate test validation have been achieved. The link to immunogenicity and efficacy has traditionally been strongest with attenuated vaccines and toxoids. Control potency test failure does predict that a serial or batch of vaccine would most likely provide insufficient immunogenicity in typical field applications. Because of the complexity of pathogenic processes and associated immune responses, potency tests may not always directly predict the effectiveness of a vaccine. Thus, vaccines that pass control potency testing may not always provide adequate efficacy. This is particularly true of adjuvanted, inactivated vaccines. In the development of vaccine formulations and control tests for vaccines, the nature of the desired protective immune responses to the targeted pathogen (when known) should be considered. These considerations could provide better alternatives in the assays chosen as correlates of immunity and may more accurately predict efficacy and assure batch-to-batch consistency. Also, the effects of the dose and duration of antigen exposure as well as the nature of antigen presentation and generation of extrinsic cytokines could be characterised and correlated to vaccine potency as additional indicators of vaccine efficacy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号