首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2779篇
  免费   231篇
  国内免费   3篇
  3013篇
  2023年   10篇
  2022年   20篇
  2021年   55篇
  2020年   30篇
  2019年   35篇
  2018年   38篇
  2017年   35篇
  2016年   73篇
  2015年   107篇
  2014年   120篇
  2013年   159篇
  2012年   256篇
  2011年   206篇
  2010年   141篇
  2009年   132篇
  2008年   191篇
  2007年   175篇
  2006年   194篇
  2005年   152篇
  2004年   195篇
  2003年   146篇
  2002年   137篇
  2001年   32篇
  2000年   15篇
  1999年   34篇
  1998年   36篇
  1997年   30篇
  1996年   19篇
  1995年   23篇
  1994年   18篇
  1993年   30篇
  1992年   17篇
  1991年   12篇
  1990年   20篇
  1989年   19篇
  1988年   11篇
  1987年   10篇
  1986年   13篇
  1985年   14篇
  1984年   5篇
  1983年   9篇
  1982年   13篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1976年   4篇
  1974年   2篇
  1969年   1篇
  1964年   1篇
排序方式: 共有3013条查询结果,搜索用时 15 毫秒
71.
MHAA4549A is a human immunoglobulin G1 (IgG1) monoclonal antibody that binds to a highly conserved epitope on the stalk of influenza A hemagglutinin and blocks the hemagglutinin-mediated membrane fusion in the endosome, neutralizing all known human influenza A strains. Pharmacokinetics (PK) of MHAA4549A and its related antibodies were determined in DBA/2J and Balb-c mice at 5 mg/kg and in cynomolgus monkeys at 5 and 100 mg/kg as a single intravenous dose. Serum samples were analyzed for antibody concentrations using an ELISA and the PK was evaluated using WinNonlin software. Human PK profiles were projected based on the PK in monkeys using species-invariant time method. The human efficacious dose projection was based on in vivo nonclinical pharmacological active doses, exposure in mouse infection models and expected human PK. The PK profiles of MHAA4549A and its related antibody showed a linear bi-exponential disposition in mice and cynomolgus monkeys. In mice, clearance and half-life ranged from 5.77 to 9.98 mL/day/kg and 10.2 to 5.76 days, respectively. In cynomolgus monkeys, clearance and half-life ranged from 4.33 to 4.34 mL/day/kg and 11.3 to 11.9 days, respectively. The predicted clearance in humans was ~2.60 mL/day/kg. A single intravenous dose ranging from 15 to 45 mg/kg was predicted to achieve efficacious exposure in humans. In conclusion, the PK of MHAA4549A was as expected for a human IgG1 monoclonal antibody that lacks known endogenous host targets. The predicted clearance and projected efficacious doses in humans for MHAA4549A have been verified in a Phase 1 study and Phase 2a study, respectively.  相似文献   
72.
73.
A new experimental framework for the characterization of defects in semiconductors is demonstrated. Through the direct, energy‐resolved correlation of three analytical techniques spanning six orders of magnitude in spatial resolution, a critical mid‐bandgap electronic trap level (EV + 0.56 eV) within Ag0.2Cu0.8In1?xGaxSe2 is traced to its nanoscale physical location and chemical source. This is achieved through a stepwise, site‐specific correlated characterization workflow consisting of device‐scale (≈1 mm2) deep level transient spectroscopy (DLTS) to survey the traps present, scanning probe–based DLTS (scanning‐DLTS) for mesoscale‐resolved (hundreds of nanometers) mapping of the target trap state's spatial distribution, and scanning transmission electron microscope based electron energy‐loss spectroscopy (STEM‐EELS) and X‐ray energy‐dispersive spectroscopy for nanoscale energy‐, structure, and chemical‐resolved investigation of the defect source. This first demonstration of the direct observation of sub‐bandgap defect levels via STEM‐EELS, combined with the DLTS methods, provides strong evidence that the long‐suspected CuIn/Ga substitutional defects are indeed the most likely source of the EV + 0.56 eV trap state and serves as a key example of this approach for the fundamental identification of defects within semiconductors, in general.  相似文献   
74.
The International Journal of Life Cycle Assessment - Stakeholders across the food product supply chain are increasingly interested in understanding the environmental effects of food production....  相似文献   
75.
Fresh vegetables have become associated with outbreaks caused by Escherichia coli O157:H7 (EcO157). Between 1995-2006, 22 produce outbreaks were documented in the United States, with nearly half traced to lettuce or spinach grown in California. Outbreaks between 2002 and 2006 induced investigations of possible sources of pre-harvest contamination on implicated farms in the Salinas and San Juan valleys of California, and a survey of the Salinas watershed. EcO157 was isolated at least once from 15 of 22 different watershed sites over a 19 month period. The incidence of EcO157 increased significantly when heavy rain caused an increased flow rate in the rivers. Approximately 1000 EcO157 isolates obtained from cultures of>100 individual samples were typed using Multi-Locus Variable-number-tandem-repeat Analysis (MLVA) to assist in identifying potential fate and transport of EcO157 in this region. A subset of these environmental isolates were typed by Pulse Field Gel Electrophoresis (PFGE) in order to make comparisons with human clinical isolates associated with outbreak and sporadic illness. Recurrence of identical and closely related EcO157 strains from specific locations in the Salinas and San Juan valleys suggests that transport of the pathogen is usually restricted. In a preliminary study, EcO157 was detected in water at multiple locations in a low-flow creek only within 135 meters of a point source. However, possible transport up to 32 km was detected during periods of higher water flow associated with flooding. During the 2006 baby spinach outbreak investigation, transport was also detected where water was unlikely to be involved. These results indicate that contamination of the environment is a dynamic process involving multiple sources and methods of transport. Intensive studies of the sources, incidence, fate and transport of EcO157 near produce production are required to determine the mechanisms of pre-harvest contamination and potential risks for human illness.  相似文献   
76.
77.
78.
Plague is a flea-borne rodent-associated zoonotic disease that is caused by Yersinia pestis and characterized by long quiescent periods punctuated by rapidly spreading epidemics and epizootics. How plague bacteria persist during inter-epizootic periods is poorly understood, yet is important for predicting when and where epizootics are likely to occur and for designing interventions aimed at local elimination of the pathogen. Existing hypotheses of how Y. pestis is maintained within plague foci typically center on host abundance or diversity, but little attention has been paid to the importance of flea diversity in enzootic maintenance. Our study compares host and flea abundance and diversity along an elevation gradient that spans from low elevation sites outside of a plague focus in the West Nile region of Uganda (~725-1160 m) to higher elevation sites within the focus (~1380-1630 m). Based on a year of sampling, we showed that host abundance and diversity, as well as total flea abundance on hosts was similar between sites inside compared with outside the plague focus. By contrast, flea diversity was significantly higher inside the focus than outside. Our study highlights the importance of considering flea diversity in models of Y. pestis persistence.  相似文献   
79.
80.
Contact‐dependent growth inhibition (CDI) is a widespread form of inter‐bacterial competition that requires direct cell‐to‐cell contact. CDI+ inhibitor cells express CdiA effector proteins on their surface. CdiA binds to specific receptors on susceptible target bacteria and delivers a toxin derived from its C‐terminal region (CdiA‐CT). Here, we show that purified CdiA‐CT536 toxin from uropathogenic Escherichia coli 536 translocates into bacteria, thereby by‐passing the requirement for cell‐to‐cell contact during toxin delivery. Genetic analyses demonstrate that the N‐terminal domain of CdiA‐CT536 is necessary and sufficient for toxin import. The CdiA receptor plays no role in this import pathway; nor do the Tol and Ton systems, which are exploited to internalize colicin toxins. Instead, CdiA‐CT536 import requires conjugative F pili. We provide evidence that the N‐terminal domain of CdiA‐CT536 interacts with F pilin, and that pilus retraction is critical for toxin import. This pathway is reminiscent of the strategy used by small RNA leviviruses to infect F+ cells. We propose that CdiA‐CT536 mimics the pilin‐binding maturation proteins of leviviruses, allowing the toxin to bind F pili and become internalized during pilus retraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号