首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2916篇
  免费   241篇
  国内免费   3篇
  2023年   11篇
  2022年   21篇
  2021年   58篇
  2020年   31篇
  2019年   39篇
  2018年   38篇
  2017年   39篇
  2016年   76篇
  2015年   119篇
  2014年   127篇
  2013年   166篇
  2012年   268篇
  2011年   211篇
  2010年   148篇
  2009年   137篇
  2008年   201篇
  2007年   186篇
  2006年   198篇
  2005年   156篇
  2004年   200篇
  2003年   152篇
  2002年   145篇
  2001年   34篇
  2000年   16篇
  1999年   35篇
  1998年   35篇
  1997年   30篇
  1996年   18篇
  1995年   23篇
  1994年   20篇
  1993年   30篇
  1992年   18篇
  1991年   12篇
  1990年   19篇
  1989年   17篇
  1988年   13篇
  1987年   11篇
  1986年   16篇
  1985年   14篇
  1984年   6篇
  1983年   8篇
  1982年   12篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1976年   5篇
  1974年   2篇
  1964年   2篇
  1954年   2篇
  1947年   2篇
排序方式: 共有3160条查询结果,搜索用时 15 毫秒
61.

Background

Female Aedes aegypti mosquitoes are the principal vector for dengue fever, causing 50–100 million infections per year, transmitted between human and mosquito by blood feeding. Ae. aegypti host-seeking behavior is known to be inhibited for three days following a blood meal by a hemolymph-borne humoral factor. Head Peptide-I is a candidate peptide mediating this suppression, but the mechanism by which this peptide alters mosquito behavior and the receptor through which it signals are unknown.

Methodology/Principal Findings

Head Peptide-I shows sequence similarity to short Neuropeptide-F peptides (sNPFs) that have been implicated in feeding behaviors and are known to signal through Neuropeptide Y (NPY)-Like Receptors (NPYLRs). We identified eight NPYLRs in the Ae. aegypti genome and screened each in a cell-based calcium imaging assay for sensitivity against a panel of peptides. Four of the Ae. aegypti NPYLRs responded to one or more peptide ligands, but only NYPLR1 responded to Head Peptide-I as well as sNPFs. Two NPYLR1 homologues identified in the genome of the Lyme disease vector, Ixodes scapularis, were also sensitive to Head Peptide-I. Injection of synthetic Head Peptide-I and sNPF-3 inhibited host-seeking behavior in non-blood-fed female mosquitoes, whereas control injections of buffer or inactive Head Peptide-I [Cys10] had no effect. To ask if NPYLR1 is necessary for blood-feeding-induced host-seeking inhibition, we used zinc-finger nucleases to generate five independent npylr1 null mutant strains and tested them for behavioral abnormalities. npylr1 mutants displayed normal behavior in locomotion, egg laying, sugar feeding, blood feeding, host seeking, and inhibition of host seeking after a blood meal.

Conclusions

In this work we deorphanized four Ae. aegypti NPYLRs and identified NPYLR1 as a candidate sNPF receptor that is also sensitive to Head Peptide-I. Yet npylr1 alone is not required for host-seeking inhibition and we conclude that other receptors, additional peptides, or both, regulate this important behavior.  相似文献   
62.
Highlights? Ebf2 is selectively expressed in brown relative to white adipocytes and binds to chromatin at brown fat-specific target sites of Pparγ ? Ebf2 expression in white fat or muscle precursor cells recruits Pparγ to its brown fat-specific gene targets and drives a complete program of brown adipocyte differentiation ? Brown adipose cells and tissue from Ebf2-deficient mice display a complete loss of thermogenic characteristics while gaining molecular attributes of white adipose  相似文献   
63.
Lysine-specific demethylase 1 (Lsd1/Aof2/Kdm1a), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. Lsd1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that Lsd1-interacting proteins regulate the activity and specificity of Lsd1, the significance and roles of such interactions in developmental processes remain largely unknown. Here we describe a hypomorphic Lsd1 allele that contains two point mutations in the tower domain, resulting in a protein with reduced interaction with known binding partners and decreased enzymatic activity. Mice homozygous for this allele die perinatally due to heart defects, with the majority of animals suffering from ventricular septal defects. Molecular analyses revealed hyperphosphorylation of E-cadherin in the hearts of mutant animals. These results identify a previously unknown role for Lsd1 in heart development, perhaps partly through the control of E-cadherin phosphorylation.  相似文献   
64.

Background

Further research is necessary to understand the factors contributing to the high prevalence of HIV/STIs among men who have sex with men (MSM) in Peru. We compared HIV/STI prevalence and risk factors between two non-probability samples of MSM, one passively enrolled from an STI clinic and the other actively enrolled from community venues surrounding the clinic in Lima, Peru.

Methods

A total of 560 self-identified MSM were enrolled between May-December, 2007. 438 subjects enrolled from a municipal STI clinic and 122 subjects enrolled during community outreach visits. All participants underwent screening for HIV, syphilis, HSV-2, gonorrhoea, and chlamydia and completed a survey assessing their history of HIV/STIs, prior HIV testing, and sexual behavior.

Results

HIV prevalence was significantly higher among MSM enrolled from the clinic, with previously undiagnosed HIV identified in 9.1% compared with 2.6% of community participants. 15.4 % of all MSM screened were infected with ≥1 curable STI, 7.4% with early syphilis (RPR≥1∶16) and 5.5% with urethral gonorrhoea and/or chlamydia. No significant differences between populations were reported in prevalence of STIs, number of male sex partners, history of unprotected anal intercourse, or alcohol and/or drug use prior to sex. Exchange of sex for money or goods was reported by 33.5% of MSM enrolled from the clinic and 21.2% of MSM from the community (p = 0.01).

Conclusions

Our data demonstrate that the prevalence of HIV and STIs, including syphilis, gonorrhoea, and chlamydia are extremely high among MSM enrolled from both clinic and community venues in urban Peru. New strategies are needed to address differences in HIV/STI epidemiology between clinic- and community-enrolled samples of MSM.  相似文献   
65.
Knowledge of roost selection by northern yellow bats (Lasiurus intermedius) is limited to a small number of known roost locations. Yet knowledge of basic life history is fundamental to understanding past response to anthropogenic change and to predict how species will respond to future environmental change. Therefore, we examined male northern yellow bat roost selection on 2 Georgia, USA, barrier islands with different disturbance histories. Sapelo Island has a history of extensive disturbance and is dominated by pine (Pinus spp.) forests; Little Saint Simons Island has a limited disturbance history with maritime oak (Quercus spp.) forest as the dominant cover type. From March–July 2012 and 2013, we radio-tracked 35 adult male northern yellow bats to diurnal roosts and modeled roost characteristics at the plot and landscape scales. We located 387 roosts, of which 95% were in Spanish moss (Tillandsia usneoides) hanging in hardwood trees. On both islands, bats selected roost trees with larger diameters than surrounding trees and selected roost locations with greater open flight space (i.e., low midstory clutter) underneath. Roosts were located farther from open areas on Sapelo and closer to fresh water on Little Saint Simons compared to random locations. Lower availability of hardwood forest on Sapelo may have resulted in small-scale roost site selection (i.e., plot level) despite potential increased costs of commuting to water and open areas for foraging. In contrast, greater availability of hardwood forest on Little Saint Simons likely allowed selection of roosts closer to fresh water, which provides foraging and drinking opportunities. Our results indicate that mature hardwood trees in areas with low midstory clutter are important in male northern yellow bat roost selection, but landscape-level features have varying influences on roost selection, likely as a result of differences in disturbance history. Therefore, management will differ depending on the landscape context. Further research is needed to examine roost selection by females, which may have different habitat requirements. © 2020 The Wildlife Society.  相似文献   
66.
Frew  Adam  Powell  Jeff R.  Johnson  Scott N. 《Plant and Soil》2020,447(1-2):463-473
Aims

Arbuscular mycorrhizal (AM) fungi associate with the majority of terrestrial plants, influencing their growth, nutrient uptake and defence chemistry. Consequently, AM fungi can significantly impact plant-herbivore interactions, yet surprisingly few studies have investigated how AM fungi affect plant responses to root herbivores. This study aimed to investigate how AM fungi affect plant tolerance mechanisms to belowground herbivory.

Methods

We examined how AM fungi affect plant (Saccharum spp. hybrid) growth, nutrient dynamics and secondary chemistry (phenolics) in response to attack from a root-feeding insect (Dermolepida albohirtum).

Results

Root herbivory reduced root mass by almost 27%. In response, plants augmented investment in aboveground biomass by 25%, as well as increasing carbon concentrations. The AM fungi increased aboveground biomass, phosphorus and carbon. Meanwhile, root herbivory increased foliar phenolics by 31% in mycorrhizal plants, and increased arbuscular colonisation of roots by 75% overall. AM fungi also decreased herbivore performance, potentially via increasing root silicon concentrations.

Conclusions

Our results suggest that AM fungi may be able to augment plant tolerance to root herbivory via resource allocation aboveground and, at the same time, enhance plant root resistance by increasing root silicon. The ability of AM fungi to facilitate resource allocation aboveground in this way may be a more widespread strategy for plants to cope with belowground herbivory.

  相似文献   
67.
Freidman  Natasha  Chen  Ichia  Wu  Qianyi  Briot  Chelsea  Holst  Jeff  Font  Josep  Vandenberg  Robert  Ryan  Renae 《Neurochemical research》2020,45(6):1268-1286

The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems—the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues GltPh and GltTk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.

  相似文献   
68.
69.
70.
Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2pThr-161 at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号