首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2786篇
  免费   228篇
  国内免费   3篇
  3017篇
  2023年   10篇
  2022年   20篇
  2021年   56篇
  2020年   30篇
  2019年   35篇
  2018年   38篇
  2017年   35篇
  2016年   73篇
  2015年   107篇
  2014年   121篇
  2013年   160篇
  2012年   256篇
  2011年   206篇
  2010年   141篇
  2009年   133篇
  2008年   191篇
  2007年   176篇
  2006年   194篇
  2005年   152篇
  2004年   195篇
  2003年   146篇
  2002年   138篇
  2001年   33篇
  2000年   15篇
  1999年   37篇
  1998年   34篇
  1997年   30篇
  1996年   17篇
  1995年   22篇
  1994年   20篇
  1993年   30篇
  1992年   18篇
  1991年   11篇
  1990年   20篇
  1989年   17篇
  1988年   11篇
  1987年   10篇
  1986年   13篇
  1985年   13篇
  1984年   6篇
  1983年   8篇
  1982年   11篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1976年   4篇
  1974年   2篇
  1911年   1篇
  1910年   2篇
  1909年   1篇
排序方式: 共有3017条查询结果,搜索用时 0 毫秒
91.
Cell differentiation is widespread during the development of multicellular organisms, but rarely observed in prokaryotes. One example of prokaryotic differentiation is the Gram-negative bacterium Myxococcus xanthus . In response to starvation, this gliding bacterium initiates a complex developmental programme that results in the formation of spore-filled fruiting bodies. How the cells metabolically support the necessary complex cellular differentiation from rod-shaped vegetative cells into spherical spores is unknown. Here, we present evidence that intracellular lipid bodies provide the necessary metabolic fuel for the development of spores. Formed at the onset of starvation, these lipid bodies gradually disappear until they are completely used up by the time the cells have become mature spores. Moreover, it appears that lipid body formation in M. xanthus is an important initial step indicating cell fate during differentiation. Upon starvation, two subpopulations of cells occur: cells that form lipid bodies invariably develop into spores, while cells that do not form lipid bodies end up becoming peripheral rods, which are cells that lack signs of morphological differentiation and stay in a vegetative-like state. These data indicate that lipid bodies not only fuel cellular differentiation but that their formation represents the first known morphological sign indicating cell fate during differentiation.  相似文献   
92.
Cell cycle progression is dependent upon coordinate regulation of kinase and proteolytic pathways. Inhibitors of cell cycle transitions are degraded to allow progression into the subsequent cell cycle phase. For example, the tyrosine kinase and Cdk1 inhibitor Wee1 is degraded during G2 and mitosis to allow mitotic progression. Previous studies suggested that the N terminus of Wee1 directs Wee1 destruction. Using a chemical mutagenesis strategy, we report that multiple regions of Wee1 control its destruction. Most notably, we find that the activation domain of the Wee1 kinase is also required for its degradation. Mutations in this domain inhibit Wee1 degradation in somatic cell extracts and in cells without affecting the overall Wee1 structure or kinase activity. More broadly, these findings suggest that kinase activation domains may be previously unappreciated sites of recognition by the ubiquitin proteasome pathway.  相似文献   
93.
The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine. Horton and Gibson contributed equally to this work.  相似文献   
94.
The etiology of Parkinson disease (PD) is unclear but may involve environmental toxins such as pesticides leading to dysfunction of the ubiquitin proteasome system (UPS). Here, we measured the relative toxicity of ziram (a UPS inhibitor) and analogs to dopaminergic neurons and examined the mechanism of cell death. UPS (26 S) activity was measured in cell lines after exposure to ziram and related compounds. Dimethyl- and diethyldithiocarbamates including ziram were potent UPS inhibitors. Primary ventral mesencephalic cultures were exposed to ziram, and cell toxicity was assessed by staining for tyrosine hydroxylase (TH) and NeuN antigen. Ziram caused a preferential damage to TH+ neurons and elevated alpha-synuclein levels but did not increase aggregate formation. Mechanistically, ziram altered UPS function through interfering with the targeting of substrates by inhibiting ubiquitin E1 ligase. Sodium dimethyldithiocarbamate administered to mice for 2 weeks resulted in persistent motor deficits and a mild reduction in striatal TH staining but no nigral cell loss. These results demonstrate that ziram causes selective dopaminergic cell damage in vitro by inhibiting an important degradative pathway implicated in the etiology of PD. Chronic exposure to widely used dithiocarbamate fungicides may contribute to the development of PD, and elucidation of its mechanism would identify a new potential therapeutic target.  相似文献   
95.
Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete.  相似文献   
96.
In this report we describe the synthesis and evaluation of diverse 4-arylproline analogs as HCV NS3 protease inhibitors. Introduction of this novel P2 moiety opened up new SAR and, in combination with a synthetic approach providing a versatile handle, allowed for efficient exploitation of this novel series of NS3 protease inhibitors. Multiple structural modifications of the aryl group at the 4-proline, guided by structural analysis, led to the identification of analogs which were very potent in both enzymatic and cell based assays. The impact of this systematic SAR on different drug properties is reported.  相似文献   
97.
98.
Two different genes encoding class II chitinases from peanut (Arachis hypogaea L. cv. NC4), A.h.Chi2;1 and A.h.Chi2;2, have been cloned. In peanut cell suspension cultures, mRNA levels of A.h.Chi2;2 increased after ethylene or salicylate treatment and in the presence of conidia from Botrytis cinerea. The second gene, A.h.Chi2;1, was only expressed after treatment with the fungal spores. Transgenic tobacco plants containing the complete peanut A.h.Chi2;1 gene exhibited essentially the same expression pattern in leaves as observed in peanut cell cultures. Expression characteristics of transgenic tobacco carrying a promoter-GUS fusion of A.h.Chi2;1 are described.  相似文献   
99.
Bottlenecks, founder events, and genetic drift often result in decreased genetic diversity and increased population differentiation. These events may follow abundance declines due to natural or anthropogenic perturbations, where translocations may be an effective conservation strategy to increase population size. American black bears (Ursus americanus) were nearly extirpated from the Central Interior Highlands, USA by 1920. In an effort to restore bears, 254 individuals were translocated from Minnesota, USA, and Manitoba, Canada, into the Ouachita and Ozark Mountains from 1958 to 1968. Using 15 microsatellites and mitochondrial haplotypes, we observed contemporary genetic diversity and differentiation between the source and supplemented populations. We inferred four genetic clusters: Source, Ouachitas, Ozarks, and a cluster in Missouri where no individuals were translocated. Coalescent models using approximate Bayesian computation identified an admixture model as having the highest posterior probability (0.942) over models where the translocation was unsuccessful or acted as a founder event. Nuclear genetic diversity was highest in the source (AR = 9.11) and significantly lower in the translocated populations (AR = 7.07–7.34; P = 0.004). The Missouri cluster had the lowest genetic diversity (AR = 5.48) and served as a natural experiment showing the utility of translocations to increase genetic diversity following demographic bottlenecks. Differentiation was greater between the two admixed populations than either compared to the source, suggesting that genetic drift acted strongly over the eight generations since the translocation. The Ouachitas and Missouri were previously hypothesized to be remnant lineages. We observed a pretranslocation remnant signature in Missouri but not in the Ouachitas.  相似文献   
100.
In most meiotic systems, recombination is essential to form connections between homologs that ensure their accurate segregation from one another. Meiotic recombination is initiated by DNA double-strand breaks that are repaired using the homologous chromosome as a template. Studies of recombination in budding yeast have led to a model in which most early repair intermediates are disassembled to produce noncrossovers. Selected repair events are stabilized so they can proceed to form double-Holliday junction (dHJ) intermediates, which are subsequently resolved into crossovers. This model is supported in yeast by physical isolation of recombination intermediates, but the extent to which it pertains to animals is unknown. We sought to test this model in Drosophila melanogaster by analyzing patterns of heteroduplex DNA (hDNA) in recombination products. Previous attempts to do this have relied on knocking out the canonical mismatch repair (MMR) pathway, but in both yeast and Drosophila the resulting recombination products are complex and difficult to interpret. We show that, in Drosophila, this complexity results from a secondary, short-patch MMR pathway that requires nucleotide excision repair. Knocking out both canonical and short-patch MMR reveals hDNA patterns that reveal that many noncrossovers arise after both ends of the break have engaged with the homolog. Patterns of hDNA in crossovers could be explained by biased resolution of a dHJ; however, considering the noncrossover and crossover results together suggests a model in which a two-end engagement intermediate with unligated HJs can be disassembled by a helicase to a produce noncrossover or nicked by a nuclease to produce a crossover. While some aspects of this model are similar to the model from budding yeast, production of both noncrossovers and crossovers from a single, late intermediate is a fundamental difference that has important implications for crossover control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号