首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3514篇
  免费   248篇
  国内免费   3篇
  2023年   20篇
  2022年   28篇
  2021年   88篇
  2020年   71篇
  2019年   83篇
  2018年   111篇
  2017年   99篇
  2016年   151篇
  2015年   222篇
  2014年   230篇
  2013年   303篇
  2012年   330篇
  2011年   300篇
  2010年   195篇
  2009年   175篇
  2008年   245篇
  2007年   213篇
  2006年   169篇
  2005年   151篇
  2004年   145篇
  2003年   101篇
  2002年   74篇
  2001年   63篇
  2000年   39篇
  1999年   34篇
  1998年   13篇
  1997年   15篇
  1996年   11篇
  1995年   6篇
  1994年   7篇
  1993年   7篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1984年   8篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1970年   2篇
  1968年   1篇
  1960年   1篇
  1954年   3篇
排序方式: 共有3765条查询结果,搜索用时 218 毫秒
121.
Pyrethroid insecticides have been effective and powerful for controlling mosquitoes. However, abuse of these insecticides increases the number of resistant mosquitoes. In this study, Culex pipiens pallens and Aedes koreicus were collected from an artificial reservoir in the vicinity of a populated area in Korea, which is also a migratory bird catchment area. To monitor resistance to pyrethroid insecticides in mosquitoes, genomic DNA from the collected mosquitoes was sequenced for the kdr mutation in the voltage‐gated sodium channel (VGSC) gene. As a result, three samples with homozygous resistance (17.6%) and one with heterozygous resistance (5.9%) were found among 17 Cx. pipiens pallens specimens. One of the samples had a unique sequence at the amplified VGSC region. Of the 15 Ae. koreicus, no insecticide resistant individuals were found. In Korea, this is the first report of kdr genetic traits in Ae. koreicus and Cx. pipiens pallens and of a unique VGSC allele in Cx. pipiens pallens. Further investigation is needed to monitor the kdr resistance of these species in Korea and to determine how the unique sequence found in Cx. pipiens pallens is related to insecticide resistance.  相似文献   
122.
123.
124.
Fluorescent proteins (FPs) possess a wide variety of spectral properties that make them of widespread interest as optical markers. These proteins can be applied as pH indicators or metal biosensors. The discovery and characterization of new fluorescent proteins is expected to further extend their application. Here, we report the spectral and structural analysis of a red fluorescent protein from Acropora digitifera (designated AdRed). This protein shows a tetrameric state and is red emitting, with excitation and emission maxima at 567 and 612 nm, respectively. Its crystal structure shows the tetrameric interface stabilized by hydrogen bonding and salt bridges. The electron density map of the chromophore, consisting of Asp66–Tyr67–Gly68, shows the decarboxylated side chain of Asp66. Ser223, located near the chromophore, has the role of bridging His202 and Glu221, and is part of the hydrogen bond network. Mutated AdRed with Cys148Ser reveals a blue shift in fluorescence excitation and emission. Our results provide insights into understanding the molecular function of AdRed and other FPs.  相似文献   
125.
Quantitative light‐induced fluorescence (QLF) technology can detect some dental plaque as red fluorescence. This in vivo study aimed to identify the microbial characteristics of red fluorescent (RF) dental plaque using 16S rRNA gene sequencing and evaluate the correlations between RF plaque and the clinical symptoms of dental diseases. Paired supragingival plaque samples collected from each 10 subjects and consisted of RF and non‐RF dental plaques as observed by QLF technology using a 405 nm blue light source for excitation. The characteristics of the bacterial communities in the RF and non‐RF plaque samples were compared by sequencing analysis. An increase in microbial diversity was observed in RF plaque compared with the non‐RF plaque. There were significant differences in the community compositions between the 2 types of dental plaque. Periodontopathic bacteria were significantly more abundant in the RF plaque than non‐RF plaque. The fluorescence intensity of RF plaque was significantly related to the proportion of the periodontopathic bacterial community and the presence of gingival inflammation. In conclusion, the plaque red fluorescence is associated with changes in the microbial composition and enrichment of periodontopathic pathogens, which suggests that RF plaque detected by QLF technology could be used as a risk indicator for gingival inflammation.   相似文献   
126.
Cyanobacteria are of great importance to Earth's ecology. Due to their capability in photosynthesis and C1 metabolism, they are ideal microbial chassis that can be engineered for direct conversion of carbon dioxide and solar energy into biofuels and biochemicals. Facilitated by the elucidation of the basic biology of the photoautotrophic microbes and rapid advances in synthetic biology, genetic toolkits have been developed to enable implementation of nonnatural functionalities in engineered cyanobacteria. Hence, cyanobacteria are fast becoming an emerging platform in synthetic biology and metabolic engineering. Herein, the progress made in the synthetic biology toolkits for cyanobacteria and their utilization for transforming cyanobacteria into microbial cell factories for sustainable production of biofuels and biochemicals is outlined. Current techniques in heterologous gene expression, strategies in genome editing, and development of programmable regulatory parts and modules for engineering cyanobacteria towards biochemical production are discussed and prospected. As cyanobacteria synthetic biology is still in its infancy, apart from the achievements made, the difficulties and challenges in applying and developing genetic toolkits in cyanobacteria for biochemical production are also evaluated.  相似文献   
127.
128.
There is extensive experimental data showing that the final pH and buffer composition after protein diafiltration (DF), particularly with monoclonal antibodies, can be considerably different than that in the DF buffer due to electrostatic interactions between the charged protein and the charged ions. Previous models for this behavior have focused on the final (equilibrium) partitioning and are unable to explain the complex pH and concentration profiles during the DF process. The objective of this study is to develop a new model for antibody DF based on solution of the transient mass balance equations, with the permeate concentrations of the charged species evaluated assuming Donnan equilibrium across the semipermeable membrane in combination with electroneutrality constraints. Model predictions are in excellent agreement with experimental data obtained during DF of both acidic and basic monoclonal antibodies, with the protein charge determined from independent electrophoretic mobility measurements. The model is able to predict the entire pH/histidine concentration profiles during DF, providing a framework for the development of DF processes that yield the desired antibody formulation.  相似文献   
129.
The alfalfa weevil (Hypera postica) is a well‐known example of a worldwide‐distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.  相似文献   
130.
Faecalibacterium prausnitzii (F. prausnitzii) is one of the most abundant bacteria in the human intestine, with its anti-inflammatory effects establishing it as a major effector in human intestinal health. However, its extreme sensitivity to oxygen makes its cultivation and physiological study difficult. F. prausnitzii produces butyric acid, which is beneficial to human gut health. Butyric acid is a short-chain fatty acid (SCFA) produced by the fermentation of carbohydrates, such as dietary fibre in the large bowel. The genes encoding butyryl-CoA dehydrogenase (BCD) and butyryl-CoA:acetate CoA transferase (BUT) in F. prausnitzii were cloned and expressed in E. coli to determine the effect of butyric acid production on intestinal health using DSS-induced colitis model mice. The results from the E. coli Nissle 1917 strain, expressing BCD, BUT, or both, showed that BCD was essential, while BUT was dispensable for producing butyric acid. The effects of different carbon sources, such as glucose, N-acetylglucosamine (NAG), N-acetylgalactosamine (NAGA), and inulin, were compared with results showing that the optimal carbon sources for butyric acid production were NAG, a major component of mucin in the human intestine, and glucose. Furthermore, the anti-inflammatory effects of butyric acid production were tested by administering these strains to DSS-induced colitis model mice. The oral administration of the E. coli Nissle 1917 strain, carrying the expression vector for BCD and BUT (EcN-BCD-BUT), was found to prevent DSS-induced damage. Introduction of the BCD expression vector into E. coli Nissle 1917 led to increased butyric acid production, which improved the strain’s health-beneficial effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号