首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1066篇
  免费   117篇
  国内免费   1篇
  2021年   15篇
  2019年   8篇
  2017年   14篇
  2016年   18篇
  2015年   29篇
  2014年   28篇
  2013年   50篇
  2012年   44篇
  2011年   64篇
  2010年   28篇
  2009年   18篇
  2008年   43篇
  2007年   60篇
  2006年   49篇
  2005年   53篇
  2004年   39篇
  2003年   35篇
  2002年   34篇
  2001年   20篇
  2000年   22篇
  1999年   15篇
  1998年   18篇
  1997年   9篇
  1994年   8篇
  1992年   15篇
  1991年   12篇
  1990年   14篇
  1989年   19篇
  1988年   15篇
  1987年   12篇
  1986年   13篇
  1985年   12篇
  1984年   13篇
  1983年   22篇
  1981年   10篇
  1980年   13篇
  1979年   21篇
  1978年   19篇
  1977年   18篇
  1976年   13篇
  1975年   12篇
  1974年   17篇
  1973年   17篇
  1972年   12篇
  1971年   12篇
  1970年   15篇
  1969年   13篇
  1968年   13篇
  1967年   19篇
  1966年   10篇
排序方式: 共有1184条查询结果,搜索用时 343 毫秒
71.
72.
Recent studies investigating the evolution of genome size diversity in ferns have shown that they have a distinctive genome profile compared with other land plants. Ferns are typically characterized by possessing medium‐sized genomes, although a few lineages have evolved very large genomes. Ferns are different from other vascular plant lineages as they are the only group to show evidence for a correlation between genome size and chromosome number. In this study, we aim to explore whether the evolution of fern genome sizes is not only shaped by chromosome number changes arising from polyploidy but also by constraints on the average amount of DNA per chromosome. We selected the genus Asplenium L. as a model genus to study the question because of the unique combination of a highly conserved base chromosome number and a high frequency of polyploidy. New genome size data for Asplenium taxa were combined with existing data and analyzed within a phylogenetic framework. Genome size varied substantially between diploid species, resulting in overlapping genome sizes among diploid and tetraploid spleenworts. The observed additive pattern indicates the absence of genome downsizing following polyploidy. The genome size of diploids varied non‐randomly and we found evidence for clade‐specific trends towards larger or smaller genomes. The 578‐fold range of fern genome sizes have arisen not only from repeated cycles of polyploidy but also through clade‐specific constraints governing accumulation and/or elimination of DNA.  相似文献   
73.
Although genetic and plastic responses are sometimes considered as unrelated processes, their phenotypic effects may often align because genetic adaptation is expected to mirror phenotypic plasticity if adaptive, but run counter to it when maladaptive. Because the magnitude and direction of this alignment has further consequences for both the tempo and mode of adaptation, they are relevant for predicting an organisms’ reaction to environmental change. To better understand the interplay between phenotypic plasticity and genetic change in mediating adaptive phenotypic variation to climate variability, we here quantified genetic latitudinal variation and thermal plasticity in wing loading and wing shape in two closely related and widespread sepsid flies. Common garden rearing of 16 geographical populations reared across multiple temperatures revealed that wing loading decreases with latitude in both species. This pattern could be driven by selection for increased dispersal capacity in the cold. However, although allometry, sexual dimorphism, thermal plasticity and latitudinal differentiation in wing shape all show similar patterns in the two species, the relationship between the plastic and genetic responses differed between them. Although latitudinal differentiation (south to north) mirrored thermal plasticity (hot to cold) in Sepsis punctum, there was no relationship in Sepsis fulgens. While this suggests that thermal plasticity may have helped to mediate local adaptation in S. punctum, it also demonstrates that genetic wing shape differentiation and its relation to thermal plasticity may be complex and idiosyncratic, even among ecologically similar and closely related species. Hence, genetic responses can, but do not necessarily, align with phenotypic plasticity induced by changing environmental selection pressures.  相似文献   
74.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily of multifunctional ligands that transduce their signals through type I and II serine/threonine kinase receptors and intracellular Smad proteins. Recently, we identified the glycosylphosphatidylinositol-anchored repulsive guidance molecules RGMa, DRAGON (RGMb), and hemojuvelin (RGMc) as coreceptors for BMP signaling (Babbit, J. L., Huang, F. W., Wrighting, D. W., Xia, Y., Sidis, Y., Samad, T. A., Campagna, J. A., Chung, R., Schneyer, A., Woolf, C. J., Andrews, N. C., and Lin, H. Y. (2006) Nat. Genet. 38, 531-539; Babbit, J. L., Zhang, Y., Samad, T. A., Xia, Y., Tang, J., Schneyer, A., Woolf, C. J., and Lin, H. Y. (2005) J. Biol. Chem. 280, 29820-29827; Samad, T. A., Rebbapragada, A., Bell, E., Zhang, Y., Sidis, Y., Jeong, S. J., Campagna, J. A., Perusini, S., Fabrizio, D. A., Schneyer, A. L., Lin, H. Y., Brivanlou, A. H., Attisano, L., and Woolf, C. J. (2005) J. Biol. Chem. 280, 14122-14129). However, the mechanism by which RGM family members enhance BMP signaling remains unknown. Here, we report that RGMa bound to radiolabeled BMP2 and BMP4 with Kd values of 2.4+/-0.2 and 1.4+/-0.1 nm, respectively. In KGN human ovarian granulosa cells and mouse pulmonary artery smooth muscle cells, BMP2 and BMP4 signaling required BMP receptor type II (BMPRII), but not activin receptor type IIA (ActRIIA) or ActRIIB, based on changes in BMP signaling by small interfering RNA inhibition of receptor expression. In contrast, cells transfected with RGMa utilized both BMPRII and ActRIIA for BMP2 or BMP4 signaling. Furthermore, in BmpRII-null pulmonary artery smooth muscle cells, BMP2 and BMP4 signaling was reduced by inhibition of endogenous RGMa expression, and RGMa-mediated BMP signaling required ActRIIA expression. These findings suggest that RGMa facilitates the use of ActRIIA by endogenous BMP2 and BMP4 ligands that otherwise prefer signaling via BMPRII and that increased utilization of ActRIIA leads to generation of an enhanced BMP signal.  相似文献   
75.
76.
77.
Plesiadapiformes has long been considered to be an archaic group of Primates. Discovery of a paromomyid plesiadapiform skull and independent analysis of referred postcrania have led investigators to conclude that Plesiadapiformes shares a closer relationship to extant flying lemurs (Dermoptera) than to Primates (= Euprimates of Hoffstetter [1977] Bull Mem Soc Anthropol Paris Ser 13 4:327-346). Despite challenges to this interpretation, the plesiadapiform-dermopteran relationship has gained currency in recent years. Here we show that newly discovered crania of Ignacius graybullianus, preserving previously undocumented portions of the ear, are more similar to primates than to dermopterans. New specimens confirm that paromomyids lacked the petrosal bulla of primates. However, these new specimens also demonstrate that paromomyids likely had: 1) a small promontorial branch of the internal carotid artery; 2) a lateral route for the internal carotid nerves crossing the promontorium; and 3) a ring-like ectotympanic with an annular bridge. This pattern is similar to primitive primates and fundamentally different from dermopterans, which have: 1) no internal carotid artery; 2) internal carotid nerves that take a more medial route; and 3) no annular bridge. Recognition of some primate-like traits, documented here by new evidence, indicates that Paromomyidae is likely to be more closely related to other Paleogene Plesiadapiformes and Eocene Primates than to extant Dermoptera. In view of these findings, a link between paromomyids and extant dermopterans ("Eudermoptera") is not convincingly supported by a single characteristic of the basicranium.  相似文献   
78.
A rising blood titer of juvenile hormone (JH) in adult worker honey bees is associated with the shift from working in the hive to foraging. We determined whether the JH increase occurs in anticipation of foraging or whether it is a result of actual foraging experience and/or diurnal changes in exposure to sunlight. We recorded all foraging flights of tagged bees observed at a feeder in a large outdoor flight cage. We measured JH from bees that had taken 1, 3-5, or >100 foraging flights and foragers of indeterminate experience leaving or entering the hive. To study diurnal variation in JH, we sampled foragers every 6h over one day. Titers of JH in foragers were high relative to nurses as in previous studies, suggesting that conditions in the flight cage had no effect on the relationship between foraging behavior and JH. Titers of JH in foragers showed no significant effects of foraging experience, but did show significant diurnal variation. Our results indicate that the high titer of JH in foragers anticipates the onset of foraging and is not affected by foraging experience, but is modulated diurnally.  相似文献   
79.
Culturing murine embryonic stem (ES) cells within embryoid bodies (EBs) has been reported to reproduce cardiomyocyte development from primitive precursor cells to highly specialized phenotypes of cardiac tissue. We show here that the specific inhibitor of phosphatidylinositol-3-kinase (PI-3-kinase), LY294002, blocks the growth and induces apoptosis as well as necrosis of D3 ES cells within early EBs. Treatment of EBs from day 3 to day 7 with 50 microM LY294002 resulted in a massive loss of alpha-actinin-stained cardiomyocytes after plating the EBs for additional 7 days. In parallel we observed a strong decrease in the number of EBs containing area(s) with beating cardiomyocytes. The specific action of the PI-3-kinase inhibitor on development of cardiomyocytes was demonstrated by the observation that formation of endothelial cells was not affected in the same EBs. Our results provide the first evidence that signal transduction via the PI-3-kinase pathway is essential for mammalian early cardiomyocyte development.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号