首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   38篇
  2022年   1篇
  2021年   8篇
  2020年   7篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   15篇
  2015年   22篇
  2014年   20篇
  2013年   25篇
  2012年   24篇
  2011年   26篇
  2010年   20篇
  2009年   17篇
  2008年   34篇
  2007年   27篇
  2006年   22篇
  2005年   25篇
  2004年   15篇
  2003年   29篇
  2002年   21篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1995年   6篇
  1994年   8篇
  1993年   2篇
  1992年   6篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1953年   1篇
  1946年   1篇
排序方式: 共有469条查询结果,搜索用时 62 毫秒
61.
Tumor therapeutics by design: targeting and activation of death receptors   总被引:8,自引:0,他引:8  
Due to their strong apoptosis-inducing capacity, the death receptor ligands CD95L, TNF and TRAIL have been widely viewed as potential cancer therapeutics. While clinical data with CD95L and TRAIL are not yet available, TNF is a registered drug, albeit only for loco-regional application in a limited number of indications. The TNF experience has told us that specific delivery and restricted action is a major challenge in the development of multifunctional, pleiotropically acting cytokines into effective cancer therapeutics. Thus, gene-therapeutic approaches and new cytokine variants have been designed over the last 10 years with the aim of increasing anti-tumoral activity and reducing systemic side effects. Here, we present our current view of the therapeutic potential of the death receptor ligands TNF, CD95L and TRAIL and of the progress made towards improving their efficacy by tumor targeting, use of gene therapy and genetic engineering. Results generated with newly designed fusion proteins suggest that enhanced tumor-directed activity and prevention of undesirable actions of death receptor ligands is possible, thereby opening up a useful therapeutic window for all of the death receptor ligands, including CD95L.  相似文献   
62.
Neisseria meningitidis is a human pathogen, which is a major cause of sepsis and meningitis. The bacterium colonizes the upper respiratory tract of approximately 10% of humans where it lives as a commensal. On rare occasions, it crosses the epithelium and reaches the bloodstream causing sepsis. From the bloodstream it translocates the blood-brain barrier, causing meningitis. Although all strains have the potential to cause disease, a subset of them, which belongs to hypervirulent lineages, causes disease more frequently than others. Recently, we described NadA, a novel antigen of N. meningitidis, present in three of the four known hypervirulent lineages. Here we show that NadA is a novel bacterial invasin which, when expressed on the surface of Escherichia coli, promotes adhesion to and invasion into Chang epithelial cells. Deletion of the N-terminal globular domain of recombinant NadA or pronase treatment of human cells abrogated the adhesive phenotype. A hypervirulent strain of N. meningitidis where the nad A gene was inactivated had a reduced ability to adhere to and invade into epithelial cells in vitro. NadA is likely to improve the fitness of N. meningitidis contributing to the increased virulence of strains that belong to the hypervirulent lineages.  相似文献   
63.
A new yeast poly(A) polymerase complex involved in RNA quality control   总被引:2,自引:0,他引:2  
Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAiMet). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAiMet with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAiMet by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover.  相似文献   
64.
The NHE4 Na+/H+ exchanger is abundantly expressed on the basolateral membrane of gastric parietal cells. To test the hypothesis that it is required for normal acid secretion, NHE4-null mutant (NHE4-/-) mice were prepared by targeted disruption of the NHE4 (Slc9a4) gene. NHE4-/- mice survived and appeared outwardly normal. Analysis of stomach contents revealed that NHE4-/- mice were hypochlorhydric. The reduction in acid secretion was similar in 18-day-old, 9-week-old, and 6-month-old mice, indicating that the hypochlorhydria phenotype did not progress over time, as was observed in mice lacking the NHE2 Na+/H+ exchanger. Histological abnormalities were observed in the gastric mucosa of 9-week-old NHE4-/- mice, including sharply reduced numbers of parietal cells, a loss of mature chief cells, increased numbers of mucous and undifferentiated cells, and an increase in the number of necrotic and apoptotic cells. NHE4-/- parietal cells exhibited limited development of canalicular membranes and a virtual absence of tubulovesicles, and some of the microvilli had centrally bundled actin. We conclude that NHE4, which may normally be coupled with the AE2 Cl-/HCO3- exchanger, is important for normal levels of gastric acid secretion, gastric epithelial cell differentiation, and development of secretory canalicular and tubulovesicular membranes.  相似文献   
65.
OBJECTIVE: Plasminogen activator inhibitor type-1 (PAI-1) plays a central role in fibrolysis and has recently been hypothesized to influence components of the insulin resistance syndrome. We consider whether the 4G/5G polymorphism influences components of insulin resistance and obesity solely through PAI-1 protein levels or also though a secondary pathway. In addition, we explore whether transforming growth factor (TGF-beta1), a key regulator of PAI-1 expression, modifies the influence of the PAI-1 4G/5G polymorphism on these traits. METHODS AND RESULTS: The Insulin Resistance and Atherosclerosis (IRAS) Family Study genotyped 287 African American (18 pedigrees) and 811 Hispanic American (45 pedigrees) individuals for the 4G/5G PAI-1 and two TGF-beta1 polymorphisms (R25P, C-509T). Individuals were recruited from three clinical centers located in San Antonio (urban Hispanic), San Luis Valley (rural Hispanic) and Los Angeles (African American). The presence of the 4G PAI-1 allele was positively associated with PAI-1 protein level (combined sample p < 0.0001). Hispanic Americans average 65% higher PAI-1 protein levels than African Americans (p < 0.0001). Consistently across ethnic groups, increased PAI-1 protein levels were associated with increased insulin resistance and overall and central obesity (p value < 0.0001, combined sample). Adjusting for PAI-1 protein levels, there was evidence of an association of PAI-1 genotype (4G) with insulin sensitivity (p < 0.002) and subcutaneous fat (p < 0.01). These associations were not influenced by TGF-beta1 genotypes. CONCLUSIONS: PAI-1 protein is a strong correlate of insulin resistance (IR) and obesity in Hispanics and African Americans. However, PAI-1 4G/5G polymorphism appears to influence insulin resistance and obesity beyond its direct influence on serum PAI-1 protein levels.  相似文献   
66.
Previously, we showed that hydroethidine (HE) reacts with intracellular superoxide radical anion (O2-*) to form a unique fluorescent marker product, 2-hydroxyethidium cation (2-OH-E+), that was not formed from HE reaction with other biologically relevant oxidants (H. Zhao et al. Proc. Natl. Acad. Sci. USA102:5727-5732; 2005). Here we rigorously assessed the confounding effects of light, sonication, and Mn(III)TBAP on 2-OH-E+, the HE/O2-* reaction product. Results indicate that continuous exposure to visible light induced photo-oxidation of HE to ethidium cation (E+) by a 2-OH-E+ -dependent mechanism. Treatment of HE with ultrasound, a frequently used technique to lyse cell membranes, induced 2-OH-E+ from in situ generation of O2-*. Mn(III)TBAP, a cell-permeable metal-porphyrin complex used as a catalytic antioxidant, reacts with HE to form E+. This finding provides an alternative interpretation for Mn(III)TBAP effects during the HE/O2-* reaction. In order to correctly interpret the HE reaction with O2-* in cells, it is therefore imperative that HE and HE-derived products be measured by HPLC. A new and improved HPLC-electrochemical (HPLC-EC) detection has been developed for analysis of intracellular O2-*. The HPLC-EC method is at least 10 times more sensitive than the HPLC-fluorescence technique for detecting O2-* in cells.  相似文献   
67.
68.
69.
Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号