首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2108篇
  免费   162篇
  2270篇
  2022年   20篇
  2021年   34篇
  2020年   25篇
  2019年   32篇
  2018年   42篇
  2017年   23篇
  2016年   46篇
  2015年   92篇
  2014年   97篇
  2013年   112篇
  2012年   154篇
  2011年   140篇
  2010年   91篇
  2009年   63篇
  2008年   105篇
  2007年   101篇
  2006年   83篇
  2005年   89篇
  2004年   113篇
  2003年   103篇
  2002年   88篇
  2001年   30篇
  2000年   15篇
  1999年   27篇
  1998年   21篇
  1997年   17篇
  1996年   26篇
  1995年   21篇
  1994年   16篇
  1993年   22篇
  1992年   32篇
  1991年   21篇
  1990年   21篇
  1989年   25篇
  1988年   19篇
  1987年   18篇
  1986年   21篇
  1985年   18篇
  1984年   22篇
  1983年   17篇
  1982年   16篇
  1981年   18篇
  1980年   11篇
  1978年   13篇
  1977年   9篇
  1976年   9篇
  1975年   19篇
  1974年   13篇
  1973年   10篇
  1972年   8篇
排序方式: 共有2270条查询结果,搜索用时 12 毫秒
261.
The important role of genetics in pediatric illness has been increasingly recognized, but the true impact has not been well delineated. An important study of pediatric inpatient admissions to a children's hospital in 1978 found a genetic basis for disease in just less than half of admitted patients. We sought to update this study in light of current hospitalization practices and new knowledge about genetics. We systematically reviewed the records of 5,747 consecutive admissions (4,224 individuals), representing 98% of patients admitted in 1996 to Rainbow Babies and Children's Hospital (Cleveland, OH). Each patient was assigned to one of five groups on the basis of the presence or absence of an underlying chronic medical condition and whether that condition had a genetic basis or susceptibility. An underlying disorder with a significant genetic component was found in 71% of admitted children. The vast majority (96%) of underlying chronic disorders in children in this study were either clearly genetic or had a genetic susceptibility. Total charges for 1996 were >$62 million, of which $50 million (81%) was accounted for by disorders with a genetic determinant. The 34% of admissions with clearly genetic underlying disorders accounted for 50% (>$31 million) of the total hospital charges. The mean length of stay was 40% longer for individuals with an underlying disease with a genetic basis than for those with no underlying disease. Charges and length of stay were similar for children with underlying chronic disorders, regardless of the cause. This study begins to quantify the enormous impact of genetic disease on inpatient pediatrics and the health care system. Additional study and frank public discourse are needed to understand the implications on the future health care workforce and on the utilization of health care resources.  相似文献   
262.
CD148 is a receptor-like protein tyrosine phosphatase expressed on a wide variety of cell types. Through the use flow cytometry and immunofluorescence microscopy on tissue sections, we examined the expression of CD148 on multiple murine hemopoietic cell lineages. We found that CD148 is moderately expressed during all stages of B cell development in the bone marrow, as well as peripheral mature B cells. In contrast, CD148 expression on thymocytes and mature T cells is substantially lower. However, stimulation of peripheral T cells through the TCR leads to an increase of CD148 expression. This up-regulation on T cells can be partially inhibited by reagents that block the activity of src family kinases, calcineurin, MEK, or PI3K. Interestingly, CD148 levels are elevated on freshly isolated T cells from MRL lpr/lpr and CTLA-4-deficient mice, two murine models of autoimmunity. Together, these expression data along with previous biochemical data suggest that CD148 may play an important regulatory role to control an immune response.  相似文献   
263.
264.
Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is ∼1.2 days, and the half-life of free infectious IAV is ∼4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is ∼0.5 days, and the average half-life of free infectious virus is ∼1.8 min. During the adaptive phase, model fitting confirms that CD8+ CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity.Current strategies for preventing or decreasing the severity of influenza infection focus on increasing virus-neutralizing antibody titers through vaccination, as experience indicates that this is the best way to prevent morbidity and mortality. Influenza A virus (IAV) undergoes mutations of the genes encoding the hemagglutinin (HA) and neuraminidase (NA) proteins that the neutralizing antibodies are directed against. When the variation is low (antigenic drift), prior vaccination often confers substantial heterologous immunity against a new seasonal IAV strain. In contrast, major genetic changes (antigenic shift) can result in pandemic IAV strains, since for novel strains, the humoral immune response is a primary response, and heterologous immunity is lacking. The emergence of such pandemic strains and the fact that young children are more vulnerable to influenza diseases highlight the need to better understand which viral and immune parameters determine the outcome of infection with viruses novel to the individual.Conventional experimental methods to measure influenza virus immunity have been limited to animal models and studies of adult human peripheral blood leukocytes. The advantages of using animal models include the ability to intensively sample multiple tissues and to utilize genetic and other interventions, such as blocking or depleting antibodies, to dissect the contribution of individual arms of the immune system. However, it is easy to question the relevance of these experiments to humans because of the many important biological differences between human and murine immune systems (29). In both the animal and human systems, we are limited to measuring those parameters and variables for which assays are available, most of them being ex vivo. Parameters such as cell-to-cell spread of the virus in vivo, trafficking of immune cells to the lung, and the in vivo interactions in an intact immune system are much more difficult or impossible to measure with contemporary techniques, particularly in humans. Computational approaches have the potential to offset some of these limitations and provide additional insight into the kinetics of the IAV infection and the associated immune response.Animal models of influenza virus infection in which different arms of the immune system have been suppressed suggest that some components of the adaptive immune system are required for complete viral clearance, often termed a sterilizing immune response. For example, abrogation of the CD4 T-cell response by cytotoxic antibody therapy or through knockout of major histocompatibility complex (MHC) class II slightly delays viral clearance but has little overall effect on the ability to control the infection (21, 54, 55). Elimination of the CD8 T-cell response typically results in delayed viral clearance (12, 20, 47), although animals with intact CD4 T-cell and B-cell compartments are able to control the infection in the absence of CD8 T cells. Presumably, this occurs through antibody-mediated mechanisms (54). Most animals depleted of both CD8 T cells and B cells are not able to clear the virus, which results in death (14, 32, 53). CD4+ T cells certainly contribute to the control of IAV infection, although cytotoxic CD4 T cells are not frequently observed unless cultured in vitro (8, 22, 45). Thus, it is generally accepted that CD8 T cells and/or antibodies are sufficient for timely and complete IAV clearance. Studies that strictly separate the relative roles of CD8 T cells and virus-specific antibodies are less satisfying. Animals depleted of both CD4 and CD8 T cells generally do not control the infection, despite substantial production of anti-IAV IgM antibodies (4, 23, 33, 34). However, adoptive transfer of IAV-specific IgM or IgG antibodies is protective (40, 51), suggesting that the timing and magnitude of the antibody response, i.e., the affinity, avidity, and antibody isotype, are important protective factors.While murine gene knockout or lymphocyte depletion studies are highly informative, they also have a number of limitations. Most importantly, the near-complete ablation of one component of the adaptive immune system often causes profound and unpredictable effects on many other immune components. Although the reported experimental measurements are highly quantitative, they often focus only on a limited number of time points or measurements and do not capture the complexity of the altered, or intact, immune response. In contrast, high-frequency experimental sampling, coupled with mathematical modeling techniques and new statistical approaches, can give insights into the complex biology of IAV infection and test the assumptions inherent in the model. We have learned from other systems, particularly HIV (19, 35, 37, 38, 56), that quantitative analysis of the biology can reveal important factors that are not intuitively obvious. For example, our current estimates for the rates of HIV production and the life span of productively infected cells in vivo were obtained via mathematical modeling (35).Mathematical models have long been used to investigate viral dynamics and immune responses to viral infections, including influenza A virus (3, 5, 7, 15, 16, 31, 36, 48). We recently described a complex differential equation model to simulate and predict the adaptive immune response to IAV infection (24). This model involves 15 equations and 48 parameters, and because of its complexity, many of the parameter values that could not be directly measured were unidentifiable. Thus, it is difficult to estimate all model parameters by fitting experimental data directly to this complex model, although the model can be used to perform simulation predictions (25). This issue can, however, be addressed by reducing the model into smaller submodels with smaller but identifiable sets of parameters, which can be estimated from experimental data. In this paper, we describe such an approach which focuses on IAV infection and the immune response solely within the lung.In the present report, we have fitted a model of primary murine influenza virus infection to data. In naïve subjects, our data suggested that there is no adaptive immune response (e.g., IAV-specific CD8+ T cells or antibodies) detectable in the spleen, lymph nodes, or lung until approximately 5 days after infection; therefore, we have divided the analysis into the following two phases: the initial preadaptive (innate) phase and the later adaptive phase. We use direct experimental data from infection of mice with the H3N2 influenza virus A/X31 strain (2, 24) to obtain key kinetic parameters. The model fitting has revealed that the duration of the infection depends on a small set of immune components, and even large fluctuations in other arms of the immune system or IAV behavior have surprisingly little impact on the outcome of the infection.  相似文献   
265.
IntDOT is a tyrosine recombinase encoded by the conjugative transposon CTnDOT. The core binding (CB) and catalytic (CAT) domains of IntDOT interact with core-type sites adjacent to the regions of strand exchange, while the N-terminal arm binding (N) domain interacts with arm-type sites distal to the core. Previous footprinting experiments identified five arm-type sites, but how the arm-type sites participate in the integration and excision of CTnDOT was not known. In vitro integration assays with substrates containing arm-type site mutants demonstrated that attDOT sequences containing mutations in the L1 arm-type site or in the R1 and R2 or R1 and R2′ arm-type sites were dramatically defective in integration. Substrates containing mutations in the L1 and R1 arm-type sites showed a 10- to 20-fold decrease in detectable in vitro excision, but introduction of multiple arm-type site mutations in attR did not have an effect on the excision frequency. A sixth arm-type site, the R1′ site, was also identified and shown to be required for integration and important for efficient excision. These results suggest that intramolecular IntDOT interactions are required for integration, while the actions of accessory factors are more important for excision. Gel shift assays performed in the presence of core- and arm-type site DNAs showed that IntDOT affinity for the attDOT core was enhanced when IntDOT was simultaneously bound to arm-type site DNA.Conjugative transposons (CTns), also known as integrative and conjugative elements (ICEs), are mobile genetic elements that are widespread in Bacteroides spp. and are implicated in the spread of antibiotic resistance. These elements are normally integrated into the host chromosome but can excise, replicate, and transfer to a recipient cell by conjugation (34). Since CTns commonly carry antibiotic resistance genes, it is likely that the increase in antibiotic-resistant Bacteroides strains has been mediated through the lateral transfer of these elements (36). One of the best-studied ICEs in Bacteroides is the conjugative transposon CTnDOT. CTnDOT is 65 kb in size and carries genes encoding resistance to tetracycline and erythromycin. Over the past 30 years, the incidence of tetracycline resistance has increased to 80% of Bacteroides isolates due to the presence of CTnDOT-type elements (36).Integration and excision of CTnDOT results from site-specific recombination between regions of DNA known as attachment (att) sites. During integration, the joined ends of the closed circular intermediate (attDOT) recombine with the bacterial target sequence (attB) to form the recombinant sites (attL and attR). The integration reaction requires IntDOT, a CTnDOT-encoded protein that has been identified as a member of the tyrosine recombinase family, as well as a host factor encoded by Bacteroides (8, 21). Site-specific recombination between the attL and attR attachment sites results in excision of CTnDOT from the host chromosome. IntDOT is also required for excision, as are three element-encoded proteins: Orf2c, Orf2d, and Exc, as well a Bacteroides host factor (8, 38). The roles of these accessory proteins are not well understood, although Orf2c and Orf2d have been shown to bind DNA (unpublished results).One of the best-studied tyrosine recombinases is the integrase (Int) of the lambda system. The C terminus of Int includes the core binding (CB) and catalytic (CAT) domains that bind to core-type sites, which flank the sites of cleavage and strand exchange (2, 24). The N-terminal arm-binding (N) domain binds to arm-type sites that are distal to the core-type sites. In the presence of the appropriate host and accessory factors, Int binding to arm-type sites is required for the formation of higher-order protein/DNA complexes known as intasomes, which are required for integration and excision (15, 18, 22). Int is capable of making intramolecular interactions (interactions between Int monomers on the same attachment site) and intermolecular interactions (interactions between Int monomers on different attachment sites) during recombination (15, 16). In the lambda system, the directionality of the reaction is regulated by Int interactions with arm-type sites in conjunction with the integration host factor (IHF) during the formation of an integrative intasome, or IHF, Xis, and FIS during the formation of the two excisive intasomes (1, 4, 42).Presumably, IntDOT occupancy of specific arm-type sites in conjunction with interactions of accessory factors with att sites leads to the assembly of integrative or excisive intasomes and thus contributes to the directionality of IntDOT-mediated recombination. Previous DNase I footprinting experiments identified five arm-type binding sites on attDOT (11). In this study, mutations were constructed in the five sites to determine their roles in the integration and excision of CTnDOT. In addition, a sixth arm-type site was discovered that is important for both integrative and excisive recombination. The results of gel shift assays also show that the interaction of IntDOT with core-type sites and arm-type sites involves cooperative interactions.  相似文献   
266.
OBJECTIVE: To examine the sensitivity and specificity of the micronucleus (MN) test on swollen mononuclear cells compared to that in binucleated lymphocytes. STUDY DESIGN: This is a cross-sectional experimental study. Samples were taken from patients who had a malignancy who were scheduled to receive chemotherapy; samples were taken before and after the chemotherapy regimen began. The MN tests on swollen mononuclear cells and binucleated lymphocytes were performed on every sample. Proportions of micronucleated cells/cells screened were noted and interpreted as positive or negative results. The results of both tests were compared to get the sensitivity and specificity of the MN test on swollen mononuclear cells. RESULTS: Of 59 samples obtained, 54 were included in this study. The results showed that the sensitivity of the MN test on swollen mononuclear cells compared to that on binucleated lymphocytes was 89% and specificity was 78%. CONCLUSION: The MN test on swollen mononuclear cells was able to detect chromosomal breaks caused by chronic clastogen exposure.  相似文献   
267.
Biosynthetic diversity in plant triterpene cyclization   总被引:5,自引:0,他引:5  
Plants produce a wealth of terpenoids, many of which have been the tools of healers and chiefs for millennia. Recent research has led to the identification and characterization of many genes that are responsible for the biosynthesis of triterpenoids. Cyclases that generate sterol precursors can be recognized with some confidence on the basis of sequence; several catalytically important residues are now known, and the product profiles of sterol-generating cyclases typically reflect their phylogenetic position. By contrast, the phylogenetic relationships of cyclases that generate nonsteroidal triterpene alcohols do not consistently reflect their catalytic properties and might indicate recent and rapid catalytic evolution.  相似文献   
268.
Glucocorticoid (GC) metabolism by the 11beta-hydroxysteroid dehydrogenase (HSD) system is an important prereceptor regulator of GC action. The HSD enzymes catalyze the interconversion of the endogenous, biologically active GC cortisol and its inactive 11-dehydro metabolite cortisone. The role of the HSD enzymes in the metabolism of synthetic GCs, such as dexamethasone (Dex), is more complex. The human lung is a classic GC-sensitive organ; however, the roles of the HSD enzymes (HSD1 and HSD2) in the human lung are poorly understood. In the present study, we examined the expression of the HSD enzymes in human adult and fetal lung tissues and the human lung epithelial cell line NCI-H441. We observed that human adult and fetal lung tissues, as well as H441 cells, express HSD2 protein and that it is upregulated by Dex (10(-7) M). By contrast, HSD1 protein was undetectable. We also show that the Dex-mediated regulation of surfactant protein A is attenuated by inhibition of HSD2 activity. Furthermore, we demonstrate that unlike the inactive, 11-dehydro metabolite of cortisol (i.e., cortisone), the 11-dehydro metabolite of Dex, 11-dehydro-Dex, competes for binding to the GC receptor (GR) in human lung epithelial cells and retains GR agonist activity. Together, these data suggest that differences exist in the biological activities of the metabolites of cortisol and Dex.  相似文献   
269.
ADAMTS-1 (A Disintegrin And Metalloprotease with ThromboSpondin repeats) is a member of a family of secreted proteolytic enzymes with a complex modular structure. These enzymes are characterised by an N-terminal metalloproteinase domain, a disintegrin-like domain and a carboxyl terminal region containing variable numbers of a repeat sequence with homology to thrombospondin-1. The expression of the gene for ADAMTS-1 has been associated with inflammation, ovulation, angiogenesis, cellular proliferation and bone formation. ADAMTS-1 can proteolytically process large proteoglycans indicating a potential role in extracellular matrix turnover. In this study, we have tested ADAMTS-1 activity in gelatin zymogram assays. Since previous data demonstrate that ADAMTS-1 is a matrix metalloproteinase (MMP) substrate and is highly unstable in conditioned medium from eukaryotic cell types, we created an insect cell line expressing human ADAMTS-1. We isolated an epitope tagged full-length recombinant ADAMTS-1 from serum free insect cell conditioned medium. The purified protein had aggrecanase activity and appears as two major bands on the silver stained SDS-PAGE corresponding well to a pro-domain on form of 115 kDa and a pro-domain off form of 90 kDa. Using denatured type I collagen in zymographic analysis we demonstrate that ADAMTS-1 has a previously unreported gelatinolytic activity. Also, we notice that processing of its C-terminal region by an apparently autocatalytic process reveals a 27 kDa species with gelatinolytic activity. Furthermore, we show that MMP2 but not MMP13 remove ADAMTS-1 specific gelatin zymopraphic zones.  相似文献   
270.
Little detailed information exists on the anatomy of the nervous system and the musculature of Entoprocta. Herein we describe the distribution of the neurotransmitters RFamide and serotonin as well as the myo-anatomy of adults and asexually produced budding stages of the solitary entoproct species Loxosomella vivipara and L. parguerensis using immunocytochemistry and epifluorescence as well as confocal microscopy. The development of the RFamidergic and serotonergic nervous system starts in early budding stages. In the adults, RFamide is present in the bilateral symmetric cerebral ganglion, a pair of oral nerves that innervate two pairs of nerve cell clusters in the heel of the foot, a pair of aboral nerves, the paired lateral nerves, the calyx nerves, the atrial ring nerve, the tentacle nerves, the stomach nerves, and the rectal nerves. Serotonin is only found in the cerebral ganglion, the oral nerves, and in the tentacle nerves. Some differences in the distribution of both neurotransmitters were found between L. vivipara and L. parguerensis and are most obvious in the differing number of large serotonergic perikarya associated with the oral nerves. Nerves arising from the cerebral ganglion and running in a ventral direction have not been described for Entoprocta before, and the homology of these to the ventral nerve cords of other Spiralia is considered possible. The body musculature of both Loxosomella species comprises longitudinal and diagonal muscles in the foot, the stalk, and the calyx. We found several circular muscles in the calyx. The stalk and parts of the foot and the calyx are surrounded by a fine outer layer of ring muscles. In addition to the congruent details regarding the myo-anatomy of both species, species-specific muscle structures could be revealed. The comparison of our data with recent findings of the myo-anatomy of two Loxosoma species indicates that longitudinal and diagonal body muscles, atrial ring muscles, tentacle muscles, esophageal and rectal ring muscles, as well as intestinal and anal sphincters are probably part of the ancestral entoproct muscle bauplan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号