首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1479篇
  免费   116篇
  2023年   5篇
  2022年   15篇
  2021年   26篇
  2020年   12篇
  2019年   21篇
  2018年   28篇
  2017年   9篇
  2016年   35篇
  2015年   69篇
  2014年   61篇
  2013年   77篇
  2012年   111篇
  2011年   102篇
  2010年   63篇
  2009年   49篇
  2008年   82篇
  2007年   76篇
  2006年   61篇
  2005年   66篇
  2004年   92篇
  2003年   86篇
  2002年   77篇
  2001年   15篇
  2000年   5篇
  1999年   10篇
  1998年   16篇
  1997年   14篇
  1996年   23篇
  1995年   17篇
  1994年   7篇
  1993年   17篇
  1992年   24篇
  1991年   12篇
  1990年   14篇
  1989年   17篇
  1988年   13篇
  1987年   9篇
  1986年   12篇
  1985年   12篇
  1984年   12篇
  1983年   11篇
  1982年   10篇
  1981年   14篇
  1980年   10篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   11篇
  1971年   5篇
  1954年   6篇
排序方式: 共有1595条查询结果,搜索用时 15 毫秒
61.
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.  相似文献   
62.
63.
64.
65.
66.
67.
Mice with genetic inhibition (AC3-I) of the multifunctional Ca(2+)/calmodulin dependent protein kinase II (CaMKII) have improved cardiomyocyte survival after ischemia. Some K(+) currents are up-regulated in AC3-I hearts, but it is unknown if CaMKII inhibition increases the ATP sensitive K(+) current (I(KATP)) that underlies ischemic preconditioning (IP) and confers resistance to ischemia. We hypothesized increased I(KATP) was part of the mechanism for improved ventricular myocyte survival during ischemia in AC3-I mice. AC3-I hearts were protected against global ischemia due to enhanced IP compared to wild type (WT) and transgenic control (AC3-C) hearts. IKATP was significantly increased, while the negative regulatory dose-dependence of ATP was unchanged in AC3-I compared to WT and AC3-C ventricular myocytes, suggesting that CaMKII inhibition increased the number of functional I(KATP) channels available for IP. We measured increased sarcolemmal Kir6.2, a pore-forming I(KATP) subunit, but not a change in total Kir6.2 in cell lysates or single channel I(KATP) opening probability from AC3-I compared to WT and AC3-C ventricles, showing CaMKII inhibition increased sarcolemmal I(KATP) channel expression. There were no differences in mRNA for genes encoding I(KATP) channel subunits in AC3-I, WT and AC3-C ventricles. The I(KATP) opener pinacidil (100 microM) reduced MI area in WT to match AC3-I hearts, while the I(KATP) antagonist HMR1098 (30 microM) increased MI area to an equivalent level in all groups, indicating that increased I(KATP) and augmented IP are important for reduced ischemic cell death in AC3-I hearts. Our study results show CaMKII inhibition enhances beneficial effects of IP by increasing I(KATP).  相似文献   
68.
69.
The molecular mechanisms leading to neurodegeneration in Parkinson disease (PD) remain elusive, although many lines of evidence have indicated that alpha-synuclein and DJ-1, two critical proteins in PD pathogenesis, interact with each other functionally. The investigation on whether alpha-synuclein directly interacts with DJ-1 has been controversial. In the current study, we analyzed proteins associated with alpha-synuclein and/or DJ-1 with a robust proteomics technique called stable isotope labeling by amino acids in cell culture (SILAC) in dopaminergic MES cells exposed to rotenone versus controls. We identified 324 and 306 proteins in the alpha-synuclein- and DJ-1-associated protein complexes, respectively. Among alpha-synuclein-associated proteins, 141 proteins displayed significant changes in the relative abundance (increase or decrease) after rotenone treatment; among DJ-1-associated proteins, 119 proteins displayed significant changes in the relative abundance after rotenone treatment. Although no direct interaction was observed between alpha-synuclein and DJ-1, whether analyzed by affinity purification followed by mass spectrometry or subsequent direct co-immunoprecipitation, 144 proteins were seen in association with both alpha-synuclein and DJ-1. Of those, 114 proteins displayed significant changes in the relative abundance in the complexes associated with alpha-synuclein, DJ-1, or both after rotenone treatment. A subset of these proteins (mortalin, nucleolin, grp94, calnexin, and clathrin) was further validated for their association with both alpha-synuclein and DJ-1 using confocal microscopy, Western blot, and/or immunoprecipitation. Thus, we not only confirmed that there was no direct interaction between alpha-synuclein and DJ-1 but also, for the first time, report these five novel proteins to be associating with both alpha-synuclein and DJ-1. Further characterization of these docking proteins will likely shed more light on the mechanisms by which DJ-1 modulates the function of alpha-synuclein, and vice versa, in the setting of PD.  相似文献   
70.
Malaria, blood-borne filarial worms and intestinal parasites are all endemic in Gabon. This geographical co-distribution leads to polyparasitism and, consequently, the possibility of immune-mediated interactions among different parasite species. Intestinal protozoa and helminths could modulate antimalarial immunity, for example, thereby potentially increasing or reducing susceptibility to malaria. The aim of the study was to compare the cytokine levels and cytokine ratios according to parasitic profiles of the population to determine the potential role of co-endemic parasites in the malaria susceptibility of populations. Blood and stool samples were collected during cross-sectional surveys in five provinces of Gabon. Parasitological diagnosis was performed to detect plasmodial parasites, Loa loa, Mansonella perstans, intestinal helminths (STHs) and protozoan parasites. Nested PCR was used to detect submicroscopic plasmodial infection in individuals with negative blood smears. A cytometric bead array was used to quantify interleukin (IL)-6, IL-10 and tumour necrosis factor (TNF)-α in the plasma of subjects with different parasitological profiles. Median IL-6 and IL-10 levels and the median IL-10/TNF-α ratio were all significantly higher among individuals with Plasmodium (P.) falciparum infection than among other participants (p<0.0001). The median TNF-α level and IL-10/IL-6 ratio were higher in subjects with STHs (p = 0.09) and P. falciparum-intestinal protozoa co-infection (p = 0.04), respectively. IL-6 (r = -0.37; P<0.01) and IL-10 (r = -0.37; P<0.01) levels and the IL-10/TNF-α ratio (r = -0.36; P<0.01) correlated negatively with age. Among children under five years old, the IL-10/TNF-α and IL-10/IL-6 ratios were higher in those with intestinal protozoan infections than in uninfected children. The IL-10/TNF-α ratio was also higher in children aged 5–15 years and in adults harbouring blood-borne filariae than in their control counterparts, whereas the IL-10/IL-6 ratio was lower in those aged 5–15 years with filariae and intestinal parasites but higher in adults with intestinal parasitic infections. Asymptomatic malaria is associated with a strong polarization towards a regulatory immune response, presenting high circulating levels of IL-10. P. falciparum/intestinal protozoa co-infections were associated with an enhanced IL-10 response. Immunity against malaria could differ according to age and carriage of other parasites. Helminths and intestinal protozoa can play a role in the high susceptibility to malaria currently observed in some areas of Gabon, but further investigations are necessary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号