首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1431篇
  免费   109篇
  2023年   5篇
  2022年   9篇
  2021年   26篇
  2020年   12篇
  2019年   21篇
  2018年   28篇
  2017年   9篇
  2016年   34篇
  2015年   65篇
  2014年   59篇
  2013年   72篇
  2012年   111篇
  2011年   102篇
  2010年   63篇
  2009年   48篇
  2008年   81篇
  2007年   76篇
  2006年   61篇
  2005年   65篇
  2004年   91篇
  2003年   85篇
  2002年   77篇
  2001年   13篇
  1999年   9篇
  1998年   16篇
  1997年   14篇
  1996年   20篇
  1995年   14篇
  1994年   6篇
  1993年   17篇
  1992年   24篇
  1991年   10篇
  1990年   13篇
  1989年   14篇
  1988年   10篇
  1987年   9篇
  1986年   11篇
  1985年   9篇
  1984年   12篇
  1983年   9篇
  1982年   10篇
  1981年   14篇
  1980年   9篇
  1978年   5篇
  1977年   5篇
  1976年   6篇
  1975年   10篇
  1973年   4篇
  1971年   5篇
  1954年   6篇
排序方式: 共有1540条查询结果,搜索用时 46 毫秒
791.
792.
793.
Molluscs in general, and bivalves in particular, exhibit an extraordinary degree of mitochondrial gene order variation when compared with other metazoans. Two factors inhibiting our understanding the evolution of gene rearrangement in bivalves are inadequate taxonomic sampling and failure to examine gene order in a phylogenetic framework. Here, we report the first complete nucleotide sequence (16,060 bp) of the mitochondrial (mt) genome of a North American freshwater bivalve, Lampsilis ornata (Mollusca: Paleoheterodonta: Unionidae). Gene order and mt genome content is examined in a comparative phylogenetic framework for Lampsilis and five other bivalves, representing five families. Mitochondrial genome content is shown to vary by gene duplication and loss among taxa and between male and female mitotypes within a species. Although mt gene arrangement is highly variable among bivalves, when optimized on an independently derived phylogenetic hypothesis, it allows for the reconstruction of ancestral gene order states and indicates the potential phylogenetic utility of the data. However, the interpretation of reconstructed ancestral gene order states must take in to account both the accuracy of the phylogenetic estimation and the probability of character state change across the topology, such as the presence/absence of atp8 in bivalve lineages. We discuss what role, if any, doubly uniparental inheritance (DUI) and recombination between sexual mitotypes may play in influencing gene rearrangement of the mt genome in some bivalve lineages.  相似文献   
794.
Transactional concession models of social evolution explain the reproductive skew within groups by assuming that a dominant individual completely controls the allocation of reproduction to other group members. The models predict when the dominant will benefit from donating parcels of reproduction to other members in return for peaceful cooperation. Using linear programming methods, we present a 'majority-rules' model in which the summed actions of all society members, each with equal power, completely determine the reproductive share of any single member. The majority-rules model predicts that, despite the diffusion of power, a 'virtual dominant' (a dominant lacking special behavioural power) will emerge and that the reproductive skew will be exactly that predicted if the virtual dominant were to control completely the group's reproductive partitioning. The virtual dominant is the individual to which group members have the maximum average genetic relatedness. This result greatly broadens the applicability of transactional models of reproductive skew to social groups of any size, such as large-colony eusocial insects, and explains why queens in such colonies can achieve reproductive domination without any behavioural enforcement. Moreover, the majority-rules model unifies transactional-skew theory with models of worker policing and even generates a new theory for the cooperation among somatic cells in a multicellular organism.  相似文献   
795.
Fibroblasts synthesize, organize, and maintain connective tissues during development and in response to injury and fibrotic disease. Studies on cells in three-dimensional collagen matrices have shown that fibroblasts switch between proliferative and quiescence phenotypes, depending upon whether matrices are attached or floating during matrix remodeling. Previous work showed that cell signaling through the ERK pathway was decreased in fibroblasts in floating matrices. In the current research, we extend the previous findings to show that serum stimulation of fibroblasts in floating matrices does not result in ERK translocation to the nucleus. In addition, there was decreased serum activation of upstream members of the ERK signaling pathway, MEK and Raf, even though Ras became GTP loaded. The findings suggest that quiescence of fibroblasts in floating collagen matrices may result from a defect in Ras coupling to its downstream effectors.  相似文献   
796.
Plant beta-glucosidases display varying substrate specificities. The maize beta-glucosidase isozyme Glu1 (ZmGlu1) hydrolyzes a broad spectrum of substrates in addition to its natural substrate DIMBOA-Glc (2-O-beta-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxaxin-3-one), whereas the sorghum beta-glucosidase isozyme Dhr1 (SbDhr1) hydrolyzes exclusively its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucoside). Structural data from cocrystals of enzyme-substrate and enzyme-aglycone complexes have shown that five amino acid residues (Phe198, Phe205, Trp378, Phe466, and Ala467) are located in the aglycone-binding site of ZmGlu1 and form the basis of aglycone recognition and binding, hence substrate specificity. To study the mechanism of substrate specificity further, mutant beta-glucosidases were generated by replacing Phe198, Phe205, Asp261, Met263, Phe377, Phe466, Ala467, and Phe473 of Glu1 by Dhr1 counterparts. The effects of mutations on enzyme activity and substrate specificity were studied using both natural and artificial substrates. The simple mutant replacing Phe198 by a valine had the most drastic effect on activity, because the capacity of this enzyme to hydrolyze beta-glucosides was almost completely abolished. The analysis of this mutation was completed by a structural study of the double mutant ZmGlu1-E191D,F198V in complex with the natural substrate. The structure reveals that the single mutation F198V causes a cascade of conformational changes, which are unpredictable by standard molecular modeling techniques. Some other mutations led to drastic effects: replacing Asp261 by an asparagine decreases the catalytic efficiency of this simple mutant by 75% although replacing Tyr473 by a phenylalanine increase its efficiency by 300% and also provides a new substrate specificity by hydrolyzing dhurrin.  相似文献   
797.
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.  相似文献   
798.
Loss of parkin function is a predominant cause of familial Parkinsonism. Emerging evidence also suggests that parkin expression variability may confer a risk for sporadic Parkinson disease. We have recently demonstrated that a wide variety of Parkinson disease-linked stressors, including dopamine (DA), induce parkin solubility alterations and promote its aggregation within the cell, a phenomenon that may underlie the progressive susceptibility of the brain to degeneration. The vulnerability of parkin to stress-induced modification is likely due to its abundance of cysteine residues. Here, we performed a comprehensive mutational analysis and demonstrate that Cys residues residing both within and outside of the RING-IBR (in between RING fingers)-RING domain of parkin are important in maintaining its solubility. The majority of these Cys residues are highly conserved in parkin across different species and potentially fulfil important structural roles. Further, we found that both parkin and HHARI (human homologue of Drosophila ariadne), another RING-IBR-RING-type ubiquitin ligase, are comparably more susceptible to solubility alterations induced by oxidative and nitrosative stress when compared with other non-RING-IBR-RING Cys-containing enzymes. However, parkin appears to be uniquely sensitive to DA-mediated stress, the specificity of which is likely due to DA modification of 2 Cys residues on parkin (Cys-268 and Cys-323) that are distinct from other RING-IBR-RING members.  相似文献   
799.
800.

Background

Overnight operations pose a challenge because our circadian biology promotes sleepiness and dissipates wakefulness at night. Since the circadian effect on cognitive functions magnifies with increasing sleep pressure, cognitive deficits associated with night work are likely to be most acute with extended wakefulness, such as during the transition from a day shift to night shift.

Methodology/Principal Findings

To test this hypothesis we measured selective attention (with visual search), vigilance (with Psychomotor Vigilance Task [PVT]) and alertness (with a visual analog scale) in a shift work simulation protocol, which included four day shifts followed by three night shifts. There was a nocturnal decline in cognitive processes, some of which were most pronounced on the first night shift. The nighttime decrease in visual search sensitivity was most pronounced on the first night compared with subsequent nights (p = .04), and this was accompanied by a trend towards selective attention becoming ‘fast and sloppy’. The nighttime increase in attentional lapses on the PVT was significantly greater on the first night compared to subsequent nights (p<.05) indicating an impaired ability to sustain focus. The nighttime decrease in subjective alertness was also greatest on the first night compared with subsequent nights (p<.05).

Conclusions/Significance

These nocturnal deficits in attention and alertness offer some insight into why occupational errors, accidents, and injuries are pronounced during night work compared to day work. Examination of the nighttime vulnerabilities underlying the deployment of attention can be informative for the design of optimal work schedules and the implementation of effective countermeasures for performance deficits during night work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号