全文获取类型
收费全文 | 362篇 |
免费 | 34篇 |
专业分类
396篇 |
出版年
2024年 | 1篇 |
2021年 | 4篇 |
2020年 | 1篇 |
2019年 | 7篇 |
2018年 | 6篇 |
2017年 | 3篇 |
2016年 | 5篇 |
2015年 | 15篇 |
2014年 | 12篇 |
2013年 | 30篇 |
2012年 | 22篇 |
2011年 | 17篇 |
2010年 | 21篇 |
2009年 | 13篇 |
2008年 | 19篇 |
2007年 | 30篇 |
2006年 | 27篇 |
2005年 | 17篇 |
2004年 | 23篇 |
2003年 | 21篇 |
2002年 | 16篇 |
2001年 | 5篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1998年 | 5篇 |
1997年 | 8篇 |
1996年 | 4篇 |
1995年 | 6篇 |
1994年 | 4篇 |
1993年 | 1篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 7篇 |
1988年 | 5篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 3篇 |
1980年 | 6篇 |
1979年 | 2篇 |
1978年 | 4篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1971年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有396条查询结果,搜索用时 15 毫秒
121.
Pentyala S Ruggeri J Veerraju A Yu Z Bhatia A Desaiah D Vig P 《Indian journal of experimental biology》2010,48(7):737-743
Inositol 1,4,5-trisphosphatee (IP3), an intracellular messenger, releases Ca2+ from microsomes. Ca2+ plays a major role in regulating various cellular events like neural transmission and regulation of hormones and growth factors. Aluminum (Al), lead (Pb) and mercury (Hg) were reported to alter Ca(2+)-regulated events thereby causing neurotoxicity. Hence, an attempt was made characterize IP3 mediated Ca2+ release from rat brain microsomes under the influence of Al, Pb and Hg. Different concentrations of metals were tested over a designated time scale and their effects on IP3 mediated Ca2+ release from microsomes were monitored using Fura-2 technique. All the three metals inhibited IP3 mediated Ca2+ release, Pb being more potent. The order of potency of these three metals was Pb>Hg>Al. Except for Al, both Hg and Pb independently released Ca2+ from microsomes. Re-uptake of Ca2+ into microsomes was inhibited by all the three metals, Pb being more potent. Microsomal Ca(2+)-ATPase activity was also inhibited by all the three metals. These results suggest that neurotoxicity exerted by Al, Pb and Hg may be due to the interference of these metals with IP3 mediated calcium release and also interfering with the microsomal Ca2+ sequestration mechanism. Differential effects of heavy metal induced changes in Ca2+ flux can be used as an index of relative toxicity. 相似文献
122.
Asma Ben Ammar Payam Soltanzadeh Stéphanie Bauché Pascale Richard Evelyne Goillot Ruth Herbst Karen Gaudon Caroline Huzé Laurent Schaeffer Yuji Yamanashi Osamu Higuchi Antoine Taly Jeanine Koenig Jean-Paul Leroy Fay?al Hentati Hossein Najmabadi Kimia Kahrizi Manouchehr Ilkhani Michel Fardeau Bruno Eymard Daniel Hanta? 《PloS one》2013,8(1)
Congenital myasthenic syndromes (CMSs) are a heterogeneous group of genetic disorders affecting neuromuscular transmission. The agrin/muscle-specific kinase (MuSK) pathway is critical for proper development and maintenance of the neuromuscular junction (NMJ). We report here an Iranian patient in whom CMS was diagnosed since he presented with congenital and fluctuating bilateral symmetric ptosis, upward gaze palsy and slowly progressive muscle weakness leading to loss of ambulation. Genetic analysis of the patient revealed a homozygous missense mutation c.2503A>G in the coding sequence of MUSK leading to the p.Met835Val substitution. The mutation was inherited from the two parents who were heterozygous according to the notion of consanguinity. Immunocytochemical and electron microscopy studies of biopsied deltoid muscle showed dramatic changes in pre- and post-synaptic elements of the NMJs. These changes induced a process of denervation/reinnervation in native NMJs and the formation, by an adaptive mechanism, of newly formed and ectopic NMJs. Aberrant axonal outgrowth, decreased nerve terminal ramification and nodal axonal sprouting were also noted. In vivo electroporation of the mutated MuSK in a mouse model showed disorganized NMJs and aberrant axonal growth reproducing a phenotype similar to that observed in the patient’s biopsy specimen. In vitro experiments showed that the mutation alters agrin-dependent acetylcholine receptor aggregation, causes a constitutive activation of MuSK and a decrease in its agrin- and Dok-7-dependent phosphorylation. 相似文献
123.
Differential effects of short- and long-term high-fat diet feeding on hepatic fatty acid metabolism in rats 总被引:1,自引:0,他引:1
Ciapaite J van den Broek NM Te Brinke H Nicolay K Jeneson JA Houten SM Prompers JJ 《Biochimica et biophysica acta》2011,1811(7-8):441-451
Imbalance in the supply and utilization of fatty acids (FA) is thought to contribute to intrahepatic lipid (IHL) accumulation in obesity. The aim of this study was to determine the time course of changes in the liver capacity to oxidize and store FA in response to high-fat diet (HFD). Adult male Wistar rats were fed either normal chow or HFD for 2.5weeks (short-term) and 25weeks (long-term). Short-term HFD feeding led to a 10% higher palmitoyl-l-carnitine-driven ADP-stimulated (state 3) oxygen consumption rate in isolated liver mitochondria indicating up-regulation of β-oxidation. This adaptation was insufficient to cope with the dietary FA overload, as indicated by accumulation of long-chain acylcarnitines, depletion of free carnitine and increase in FA content in the liver, reflecting IHL accumulation. The latter was confirmed by in vivo((1))H magnetic resonance spectroscopy and Oil Red O staining. Long-term HFD feeding caused further up-regulation of mitochondrial β-oxidation (24% higher oxygen consumption rate in state 3 with palmitoyl-l-carnitine as substrate) and stimulation of mitochondrial biogenesis as indicated by 62% higher mitochondrial DNA copy number compared to controls. These adaptations were paralleled by a partial restoration of free carnitine levels and a decrease in long-chain acylcarnitine content. Nevertheless, there was a further increase in IHL content, accompanied by accumulation of lipid peroxidation and protein oxidation products. In conclusion, partially effective adaption of hepatic FA metabolism to long-term HFD feeding came at a price of increased oxidative stress, caused by a combination of higher FA oxidation capacity and oversupply of FA. 相似文献
124.
The chromosome of Bacteroides fragilis strain YCH46 was shown to be a single circular DNA molecule of about 5.3 Mb having 16 NotI, seven AscI, and six I-CeuI sites. A physical map of the chromosome was constructed by four independent experimental approaches: linking clone analysis, cross-Southern hybridization, partial restriction digestion, and two-dimensional pulsed-field gel electrophoresis. Six rRNA operons and 10 known genes were localized on the physical map. 相似文献
125.
Jeanine de Keyzer Chris van der Does Jelto Swaving Arnold J M Driessen 《FEBS letters》2002,510(1-2):17-21
SecYEG forms the protein-conducting channel of the Escherichia coli translocase. It binds the peripheral ATPase SecA that drives the preprotein translocation reaction. PrlA4 is a double mutant of SecY that enables the translocation of preproteins with a defective or even missing signal sequence. The effect of the individual mutations, F286Y and I408N, was studied with SecYEG proteoliposomes. SecY(I408N) is responsible for the increased translocation of preproteins with a defective and normal signal sequence, and exhibits a stronger prl phenotype than PrlA4. This activity correlates with an elevated SecA-translocation ATPase and SecA binding affinity. SecY(F286Y) supports only a low SecA binding affinity, preprotein translocation and SecA translocation ATPase activity. These results suggest that the second site F286Y mutation reduces the strength of the I408N mutation of PrlA4 by lowering the SecA binding affinity. 相似文献
126.
Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart 总被引:1,自引:0,他引:1
Zheng M Dilly K Dos Santos Cruz J Li M Gu Y Ursitti JA Chen J Ross J Chien KR Lederer JW Wang Y 《American journal of physiology. Heart and circulatory physiology》2004,286(1):H424-H433
The small G protein Ras-mediated signaling pathway has been implicated in the development of hypertrophy and diastolic dysfunction in the heart. Earlier cellular studies have suggested that the Ras pathway is responsible for reduced L-type calcium channel current and sarcoplasmic reticulum (SR) calcium uptake associated with sarcomere disorganization in neonatal cardiomyocytes. In the present study, we investigated the in vivo effects of Ras activation on cellular calcium handling and sarcomere organization in adult ventricular myocytes using a newly established transgenic mouse model with targeted expression of the H-Ras-v12 mutant. The transgenic hearts expressing activated Ras developed significant hypertrophy and postnatal lethal heart failure. In adult ventricular myocytes isolated from the transgenic hearts, the calcium transient was significantly depressed but membrane L-type calcium current was unchanged compared with control littermates. The expressions of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a and phospholamban (PLB) were significantly reduced at mRNA levels. The amount of SERCA2a protein was also modestly reduced. However, the expression of PLB protein and gross sarcomere organization remained unchanged in the hypertrophic Ras hearts, whereas Ser(16) phosphorylation of PLB was dramatically inhibited in the Ras transgenic hearts compared with controls. Hypophosphorylation of PLB was also associated with a significant induction of protein phosphatase 1 expression. Therefore, our results from this in vivo model system suggest that Ras-induced contractile defects do not involve decreased L-type calcium channel activities or disruption of sarcomere structure. Rather, suppressed SR calcium uptake due to reduced SERCA2a expression and hypophosphorylation of PLB due to changes in protein phosphatase expression may play important roles in the diastolic dysfunction of Ras-mediated hypertrophic cardiomyopathy. 相似文献
127.
Don R. Gomez Katherine J. Evans Paul R. Harvey Jeanine Baker Jane Barton Mireille Jourdan Louise Morin Shaun R. Pennycook Eileen S. Scott 《Mycological Research》2006,110(4):423-430
Indigenous to Europe, the blackberry rust fungus Phragmidium violaceum was introduced to Australia and subsequently appeared in New Zealand, with the most recent authorised introductions to Australia specifically for the biological control of European blackberry. Markers for ‘selective amplification of microsatellite polymorphic loci’ (SAMPL) were developed for studying the population genetics of P. violaceum. Modification of one of the two SAMPL primers with a HaeIII adapter (H) revealed significantly greater levels of genetic variation than primers used to generate AFLPs, the latter revealing little or no variation among 25 Australasian and 19 European isolates of P. violaceum. SAMPL was used to describe genetic variation among these 44 isolates of P. violaceum from 51 loci generated using primer pairs (GACA)4 + H–G and R1 + H–G. The European isolates were more diverse than Australasian isolates, with 37 and 22 % polymorphic loci, respectively. Cluster analysis revealed geographic clades, with Australasian isolates forming one cluster separated from two clusters comprising the European isolates. However, low bootstrap support at these clades suggested that Australian isolates had not differentiated significantly from European isolates since the first record of P. violaceum in Australia in 1984. In general, the results support two hypotheses. First, that the population of P. violaceum in Australia was founded from a subset of individuals originating from Europe. Second, that P. violaceum in New Zealand originated from the Australian population of P. violaceum, probably by wind dispersal of urediniospores across the Tasman Sea. The application of SAMPL markers to the current biological control programme for European blackberry is discussed. 相似文献
128.
L. Renee Ruhaak Hae-Won Uh Marian Beekman Carolien A. M. Koeleman Cornelis H. Hokke Rudi G. J. Westendorp Manfred Wuhrer Jeanine J. Houwing-Duistermaat P. Eline Slagboom André M. Deelder 《PloS one》2010,5(9)
Background
Markers for longevity that reflect the health condition and predict healthy aging are extremely scarce. Such markers are, however, valuable in aging research. It has been shown previously that the N-glycosylation pattern of human immunoglobulin G (IgG) is age-dependent. Here we investigate whether N-linked glycans reflect early features of human longevity.Methodology/Principal Findings
The Leiden Longevity Study (LLS) consists of nonagenarian sibling pairs, their offspring, and partners of the offspring serving as control. IgG subclass specific glycosylation patterns were obtained from 1967 participants in the LLS by MALDI-TOF-MS analysis of tryptic IgG Fc glycopeptides. Several regression strategies were applied to evaluate the association of IgG glycosylation with age, sex, and longevity. The degree of galactosylation of IgG decreased with increasing age. For the galactosylated glycoforms the incidence of bisecting GlcNAc increased as a function of age. Sex-related differences were observed at ages below 60 years. Compared to males, younger females had higher galactosylation, which decreased stronger with increasing age, resulting in similar galactosylation for both sexes from 60 onwards. In younger participants (<60 years of age), but not in the older age group (>60 years), decreased levels of non-galactosylated glycoforms containing a bisecting GlcNAc reflected early features of longevity.Conclusions/Significance
We here describe IgG glycoforms associated with calendar age at all ages and the propensity for longevity before middle age. As modulation of IgG effector functions has been described for various IgG glycosylation features, a modulatory effect may be expected for the longevity marker described in this study. 相似文献129.
Marian Beekman Hélène Blanché Markus Perola Anti Hervonen Vladyslav Bezrukov Ewa Sikora Friederike Flachsbart Lene Christiansen Anton J. M. De Craen Tom B. L. Kirkwood Irene Maeve Rea Michel Poulain Jean‐Marie Robine Silvana Valensin Maria Antonietta Stazi Giuseppe Passarino Luca Deiana Efstathios S. Gonos Lavinia Paternoster Thorkild I. A. Sørensen Qihua Tan Quinta Helmer Erik B. van den Akker Joris Deelen Francesca Martella Heather J. Cordell Kristin L. Ayers James W. Vaupel Outi Törnwall Thomas E. Johnson Stefan Schreiber Mark Lathrop Axel Skytthe Rudi G. J. Westendorp Kaare Christensen Jutta Gampe Almut Nebel Jeanine J. Houwing‐Duistermaat Pieternella Eline Slagboom Claudio Franceschi the GEHA consortium 《Aging cell》2013,12(2):184-193
Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome‐wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12‐q22 (LOD = 2.95), chromosome 19p13.3‐p13.11 (LOD = 3.76), and chromosome 19q13.11‐q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed‐effect meta‐analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (P‐value = 9.6 × 10?8). By combined modeling of linkage and association, we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11‐q13.32 with P‐value = 0.02 and P‐value = 1.0 × 10?5, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12‐q22, and 19p13.3‐p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity. 相似文献
130.
Proposed function of the accumulation of plasma membrane-type Ca2+-ATPase mRNA in resting cysts of the ciliate Sterkiella histriomuscorum 下载免费PDF全文
Lescasse R Grisvard J Fryd G Fleury-Aubusson A Baroin-Tourancheau A 《Eukaryotic cell》2005,4(1):103-110
From an mRNA differential-display analysis of the encystment-excystment cycle of the ciliate Sterkiella histriomuscorum, we have isolated an expressed sequence tag encoding a plasma membrane-type Ca2+-ATPase (PMCA). PMCAs are located either in the plasma membranes or in the membranes of intracellular organelles, and their function is to pump calcium either out of the cell or into the intracellular calcium stores, respectively. The S. histriomuscorum macronuclear PMCA gene (ShPMCA) and its corresponding cDNA were cloned; it is the first member of the Ca2+-ATPase family identified in Sterkiella. The predicted protein of 1,065 amino acids exhibits 37% identity with PMCAs of diverse organisms. A phylogenetic analysis showed its relatedness to homologs of two alveolates: the ciliate Paramecium tetraurelia and the apicomplexan Toxoplasma gondii. Overexpression of the protein ShPMCA failed to rescue the wild-type phenotype of three Ca2+-ATPase-defective mutant strains of Saccharomyces cerevisiae; this failure contrasts with the reported ability of the PMCAs of parasites to complement defects in yeast. ShPMCA mRNA is markedly accumulated during encystment and in resting cysts, suggesting a function during excystment. To address the possibility of a signaling role for calcium at excystment, the capacity of calcium to induce excystment was examined. 相似文献