首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   34篇
  2024年   1篇
  2021年   4篇
  2020年   1篇
  2019年   7篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   15篇
  2014年   12篇
  2013年   30篇
  2012年   22篇
  2011年   17篇
  2010年   21篇
  2009年   13篇
  2008年   19篇
  2007年   30篇
  2006年   27篇
  2005年   17篇
  2004年   23篇
  2003年   21篇
  2002年   16篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   7篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1978年   4篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有396条查询结果,搜索用时 15 毫秒
111.
Summary The indirect immunofluorescence procedure was used to identify prolactin (LTH)-and somatotropin (STH)-producing cells in the pituitary of the Mexican axolotl. Histological staining techniques were employed to corroborate immunocytological results. The LTH cells are large, orange-staining cells (acidophils 1) distributed in the posterior two-thirds of the pars distalis. The STH cells are small, erythrosinophilic elements (acidophils 2) principally concentrated in the dorsal part of the pars distalis.  相似文献   
112.
Experimental data on the content in metal ions of DNA preparations from various neoplastic and healthy tissues are summarized: metal ions are preferentially bound to reiterative DNA sequences, where they may induce conformational variations and thus modify the binding of effector molecules such as repressors and polymerases. A model is described where essential and toxic metals are successively loaded on ligand acceptor groups of increasing affinity and thus may reach the final active sites: enzymes and reiterative DNA sequences (equated at least partially to regulative DNA sequences). The effects of some molecules, including peptides, antibiotics, growth factors, hormones, and antineoplastic substances, on DNA conformation could be explained in part by their chelating ability. The neoplastic state may be induced by a modification of metal ion transfer chains: quantitatively by a continuous derepression of genes coding for metal ligands, genes that are only temporarily derepressed during development in normal cells, and qualitatively by modifications of the nucleotidic sequence of structural genes leading to an increase of the chelating ability of the coded metal ligand.  相似文献   
113.
From an mRNA differential-display analysis of the encystment-excystment cycle of the ciliate Sterkiella histriomuscorum, we have isolated an expressed sequence tag encoding a plasma membrane-type Ca2+-ATPase (PMCA). PMCAs are located either in the plasma membranes or in the membranes of intracellular organelles, and their function is to pump calcium either out of the cell or into the intracellular calcium stores, respectively. The S. histriomuscorum macronuclear PMCA gene (ShPMCA) and its corresponding cDNA were cloned; it is the first member of the Ca2+-ATPase family identified in Sterkiella. The predicted protein of 1,065 amino acids exhibits 37% identity with PMCAs of diverse organisms. A phylogenetic analysis showed its relatedness to homologs of two alveolates: the ciliate Paramecium tetraurelia and the apicomplexan Toxoplasma gondii. Overexpression of the protein ShPMCA failed to rescue the wild-type phenotype of three Ca2+-ATPase-defective mutant strains of Saccharomyces cerevisiae; this failure contrasts with the reported ability of the PMCAs of parasites to complement defects in yeast. ShPMCA mRNA is markedly accumulated during encystment and in resting cysts, suggesting a function during excystment. To address the possibility of a signaling role for calcium at excystment, the capacity of calcium to induce excystment was examined.  相似文献   
114.
Tomato (Lycopersicon esculentum Mill.) plants, which normally do not accumulate glycinebetaine (GB), are susceptible to chilling stress. Exposure to temperatures below 10 degrees C causes various injuries and greatly decreases fruit set in most cultivars. We have transformed tomato (cv. Moneymaker) with a chloroplast-targeted codA gene of Arthrobacter globiformis, which encodes choline oxidase to catalyze the conversion of choline to GB. These transgenic plants express codA and synthesize choline oxidase, while accumulating GB in their leaves and reproductive organs up to 0.3 and 1.2 micromol g(-1) fresh weight (FW), respectively. Their chloroplasts contain up to 86% of total leaf GB. Over various developmental phases, from seed germination to fruit production, these GB-accumulating plants are more tolerant of chilling stress than their wild-type counterparts. During reproduction, they yield, on average, 10-30% more fruit following chilling stress. Endogenous GB contents as low as 0.1 micromol g(-1) FW are apparently sufficient to confer high levels of tolerance in tomato plants, as achieved via transformation with the codA gene. Exogenous application of either GB or H2O2 improves both chilling and oxidative tolerance concomitant with enhanced catalase activity. These moderately increased levels of H2O2 in codA transgenic plants, as a byproduct of choline oxidase-catalyzed GB synthesis, might activate the H2O2-inducible protective mechanism, resulting in improved chilling and oxidative tolerances in GB-accumulating codA transgenic plants. Thus, introducing the biosynthetic pathway of GB into tomato through metabolic engineering is an effective strategy for improving chilling tolerance.  相似文献   
115.
Congenital myasthenic syndromes (CMS) are rare genetic diseases affecting the neuromuscular junction (NMJ) and are characterized by a dysfunction of the neurotransmission. They are heterogeneous at their pathophysiological level and can be classified in three categories according to their presynaptic, synaptic and postsynaptic origins. We report here the first case of a human neuromuscular transmission dysfunction due to mutations in the gene encoding a postsynaptic molecule, the muscle-specific receptor tyrosine kinase (MuSK). Gene analysis identified two heteroallelic mutations, a frameshift mutation (c.220insC) and a missense mutation (V790M). The muscle biopsy showed dramatic pre- and postsynaptic structural abnormalities of the neuromuscular junction and severe decrease in acetylcholine receptor (AChR) epsilon-subunit and MuSK expression. In vitro and in vivo expression experiments were performed using mutant MuSK reproducing the human mutations. The frameshift mutation led to the absence of MuSK expression. The missense mutation did not affect MuSK catalytic kinase activity but diminished expression and stability of MuSK leading to decreased agrin-dependent AChR aggregation, a critical step in the formation of the neuromuscular junction. In electroporated mouse muscle, overexpression of the missense mutation induced, within a week, a phenotype similar to the patient muscle biopsy: a severe decrease in synaptic AChR and an aberrant axonal outgrowth. These results strongly suggest that the missense mutation, in the presence of a null mutation on the other allele, is responsible for the dramatic synaptic changes observed in the patient.  相似文献   
116.
The aim of the present analysis is to combine evidence for association from the two most commonly used designs in genetic association analysis, the case-control design and the transmission disequilibrium test (TDT) design. The cases here are affected offspring from nuclear families and are used in both the case-control and TDT designs. As a result, inference from these designs is not independent. We applied a simple logistic regression method for combining evidence for association from case-control and TDT designs to single-nucleotide polymorphism data purchased on a region on chromosome 3, replicate 1 of the Aipotu population. Combining the evidence from the case-control and TDT designs yielded a 5-10% reduction in the standard errors of the relative risk estimates. The authors did not know the results before the analyses were conducted.  相似文献   
117.
We report the analysis results of the Genetic Analysis Workshop 14 simulated microsatellite marker dataset, using replicate 50 from the Danacaa population. We applied several methods for association analysis of multi-allelic markers to case-control data to study the association between Kofendrerd Personality Disorder and multi-allelic markers in a candidate region previously identified by the linkage analysis. Evidence for association was found for marker D03S0127 (p < 0.01). The analyses were done without any prior knowledge of the answers.  相似文献   
118.
119.
This study identifies stress proteins and antioxidant enzymes that may play a role in the survival strategies of the Florida red tide dinoflagellate, Karenia brevis. Heat shock protein 60 (Hsp 60), mitochondrial small heat shock protein (mitosHsp), chloroplastic small heat shock protein (chlsHsp), Mn superoxide dismutase (SOD), and Fe SOD were first identified by Western blotting. The induction of these proteins in laboratory cultures in response to elevated temperatures, hydrogen peroxide, lead, or elevated light intensities was next assessed. In parallel, F(V)/F(M), a measurement of photosynthetic efficiency and common proxy of cellular stress, was determined. Hsp 60, Fe SOD, and Mn SOD were induced following exposure to elevated temperatures, hydrogen peroxide, or lead. MitosHsp responded only to heat, whereas chlsHsp responded only to H(2)O(2)-induced stress. The expression of stress proteins and antioxidant enzymes appears to be a more sensitive indicator of heat or chemically induced stresses than F(V)/F(M). However, F(V)/F(M) decreased significantly in response to elevated light intensities that did not induce the expression of stress proteins. These results identify for the first time stress proteins and antioxidant enzymes in K. brevis, provide evidence for differential sensitivity of cellular organelles to various sources of stress, and confirm the presence of conserved stress responses observed across phyla in a dinoflagellate.  相似文献   
120.
The chromosome of Bacteroides fragilis strain YCH46 was shown to be a single circular DNA molecule of about 5.3 Mb having 16 NotI, seven AscI, and six I-CeuI sites. A physical map of the chromosome was constructed by four independent experimental approaches: linking clone analysis, cross-Southern hybridization, partial restriction digestion, and two-dimensional pulsed-field gel electrophoresis. Six rRNA operons and 10 known genes were localized on the physical map.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号