首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   32篇
  846篇
  2023年   2篇
  2022年   5篇
  2021年   16篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   8篇
  2016年   13篇
  2015年   35篇
  2014年   27篇
  2013年   60篇
  2012年   66篇
  2011年   64篇
  2010年   29篇
  2009年   34篇
  2008年   59篇
  2007年   51篇
  2006年   42篇
  2005年   39篇
  2004年   47篇
  2003年   38篇
  2002年   31篇
  2001年   10篇
  2000年   8篇
  1999年   14篇
  1998年   7篇
  1997年   6篇
  1996年   12篇
  1995年   5篇
  1994年   7篇
  1993年   10篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   9篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有846条查询结果,搜索用时 0 毫秒
121.
Plastic responses of plants exposed to mechanical stress can lead to modified, performance-enhancing, morphologies, sometimes accompanied by costs to reproduction. The capacity to present short-term plastic responses to current stress, the resulting performance (expected lower mechanical forces), and the costs of such responses to reproduction were tested for four aquatic plant species. Two ramets of the same genet were submitted to running vs standing water treatment. Traits describing the morphology, hydrodynamic performance and reproduction (sexual and vegetative) were measured. For one species, plastic responses led to reduced hydrodynamic forces, without apparent costs to reproduction, indicating that the plastic response could be beneficial for plant maintenance in stressful habitats. For two species, plastic responses were not associated with variations in performance and reproduction, possibly because of the low hydrodynamic forces experienced, even for morphologies produced under standing conditions. For one species, plastic responses were associated with a sharp decrease in sexual reproduction, without variations in performance, revealing the negative impact of currents over a short time scale. Species maintenance is linked to the capacity of individuals to tolerate mechanical forces. The contrasting responses to currents may be a key element for predicting community dynamics.  相似文献   
122.
Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of disulfide bonds that is the greatest bottleneck. Degradation of inefficiently or incorrectly oxidized proteins and the requirement for costly and time-consuming reduction and oxidation steps in the downstream processing of the proteins still are major limitations for full exploitation of B. subtilis for biopharmaceutical production. Therefore, the present study was aimed at developing a novel in vivo strategy for improved production of secreted disulfide-bond-containing proteins. Three approaches were tested: depletion of the major cytoplasmic reductase TrxA; introduction of the heterologous oxidase DsbA from Staphylococcus carnosus; and addition of redox-active compounds to the growth medium. As shown using the disulfide-bond-containing molecule Escherichia coli PhoA as a model protein, combined use of these three approaches resulted in secretion of amounts of active PhoA that were approximately 3.5-fold larger than the amounts secreted by the parental strain B. subtilis 168. Our findings indicate that Bacillus strains with improved oxidizing properties can be engineered for biotechnological production of heterologous high-value proteins containing disulfide bonds.  相似文献   
123.
Macrophage metalloelastase (MMP-12) is described to be involved in pulmonary inflammatory response. To determine the mechanisms linking MMP-12 and inflammation, we examined the effect of recombinant human MMP-12 (rhMMP-12) catalytic domain on IL-8/CXCL8 production in cultured human airway epithelial (A549) cells. Stimulation with rhMMP-12 resulted in a concentration-dependent IL-8/CXCL8 synthesis 6 h later. Similar results were also observed in cultured BEAS-2B bronchial epithelial cells. In A549 cells, synthetic matrix metalloproteinase (MMP) inhibitors prevented rhMMP-12-induced IL-8/CXCL8 release. We further demonstrated that in A549 cells, rhMMP-12 induced transient, peaking at 5 min, activation of ERK1/2. Selective MEK inhibitors (U0126 and PD-98059) blocked both IL-8/CXCL8 release and ERK1/2 phosphorylation. IL-8/CXCL8 induction and ERK1/2 activation were preceded by EGF receptor (EGFR) tyrosine phosphorylation, within 2 min, and reduced by selective EGFR tyrosine kinase inhibitors (AG-1478 and PD168393) by a neutralizing EGFR antibody and by small interfering RNA oligonucleotides directed against EGFR, implicating EGFR activation. In addition, we observed an activation of c-Fos in A549 cells stimulated by rhMMP-12, dependent on ERK1/2. Using small interfering technique, we showed that c-Fos is involved in rhMMP-12-induced IL-8/CXCL8 production. From these results, we conclude that one mechanism, by which MMP-12 induces IL-8/CXCL8 release from the alveolar epithelium, is the EGFR/ERK1/2/activating protein-1 pathway.  相似文献   
124.
The Red recombinase system of bacteriophage Lambda has been used to inactivate chromosomal genes in bacteria using PCR products. In this study, we describe the replacement of the ampicillin resistance marker of helper plasmids pKD46 and pCP20 by a gentamicin resistance gene to disrupt chromosomal genes and then to eliminate FRT flanked resistance gene in multiple antibiotic-resistant Salmonella enterica strains.  相似文献   
125.
Bacterial ATPases belonging to the ParA family assure partition of their replicons by forming dynamic assemblies which move replicon copies into the new cell-halves. The mechanism underlying partition is not understood for the Walker-box ATPase class, which includes most plasmid and all chromosomal ParAs. The ATPases studied both polymerize and interact with non-specific DNA in an ATP-dependent manner. Previous work showed that in vitro, polymerization of one such ATPase, SopA of plasmid F, is inhibited by DNA, suggesting that interaction of SopA with the host nucleoid could regulate partition. In an attempt to identify amino acids in SopA that are needed for interaction with non-specific DNA, we have found that mutation of codon 340 (lysine to alanine) reduces ATP-dependent DNA binding > 100-fold and correspondingly diminishes SopA activities that depend on it: inhibition of polymer formation and persistence, stimulation of basal-level ATP hydrolysis and localization over the nucleoid. The K340A mutant retained all other SopA properties tested except plasmid stabilization; substitution of the mutant SopA for wild-type nearly abolished mini-F partition. The behaviour of this mutant indicates a causal link between interaction with the cell's non-specific DNA and promotion of the dynamic behaviour that ensures F plasmid partition.  相似文献   
126.
Secretory proteins perform a variety of important “remote-control” functions for bacterial survival in the environment. The availability of complete genome sequences has allowed us to make predictions about the composition of bacterial machinery for protein secretion as well as the extracellular complement of bacterial proteomes. Recently, the power of proteomics was successfully employed to evaluate genome-based models of these so-called secretomes. Progress in this field is well illustrated by the proteomic analysis of protein secretion by the gram-positive bacterium Bacillus subtilis, for which ~90 extracellular proteins were identified. Analysis of these proteins disclosed various “secrets of the secretome,” such as the residence of cytoplasmic and predicted cell envelope proteins in the extracellular proteome. This showed that genome-based predictions reflect only ~50% of the actual composition of the extracellular proteome of B. subtilis. Importantly, proteomics allowed the first verification of the impact of individual secretion machinery components on the total flow of proteins from the cytoplasm to the extracellular environment. In conclusion, proteomics has yielded a variety of novel leads for the analysis of protein traffic in B. subtilis and other gram-positive bacteria. Ultimately, such leads will serve to increase our understanding of virulence factor biogenesis in gram-positive pathogens, which is likely to be of high medical relevance.  相似文献   
127.
Osteoarthritis and osteoporosis are the two most common age-related chronic disorders of articular joints and skeleton, representing a major public health problem in most developed countries. Apart from being influenced by environmental factors, both disorders have a strong genetic component, and there is now considerable evidence from large population studies that these two disorders are inversely related. Thus, an accurate analysis of the genetic component of one of these two multifactorial diseases may provide data of interest for the other. However, the existence of confounding factors must always be borne in mind in interpreting the genetic analysis. In addition, each patient must be given an accurate clinical evaluation, including family history, history of drug treatments, lifestyle, and environment, in order to reduce the background bias. Here, we review the impact of recent work in molecular genetics suggesting that powerful molecular biology techniques will soon make possible both a rapid accumulation of data on the genetics of both disorders and the development of novel diagnostic, prognostic, and therapeutic approaches.  相似文献   
128.
A BALB/c mouse model of enhanced pulmonary pathology following vaccination with formalin-inactivated alum-adsorbed respiratory syncytial virus (FI-RSV) and live RSV challenge was used to determine the type and kinetics of histopathologic lesions induced and chemokine gene expression profiles in lung tissues. These data were compared and contrasted with data generated following primary and/or secondary RSV infection or RSV challenge following vaccination with a promising subunit vaccine, BBG2Na. Severe peribronchiolitis and perivascularitis coupled with alveolitis and interstitial inflammation were the hallmarks of lesions in the lungs of FI-RSV-primed mice, with peak histopathology evident on days 5 and 9. In contrast, primary RSV infection resulted in no discernible lesions, while challenge of RSV-primed mice resulted in rare but mild peribronchiolitis and perivascularitis, with no evidence of alveolitis or interstitial inflammation. Importantly, mice vaccinated with a broad dose range (20 to 0.02 microg) of a clinical formulation of BBG2Na in aluminium phosphate demonstrated histopathology similar to that observed in secondary RSV infection. At the molecular level, FI-RSV priming was characterized by a rapid and strong up-regulation of eotaxin and monocyte chemotactic protein 3 (MCP-3) relative gene expression (potent lymphocyte and eosinophil chemoattractants) that was sustained through late time points, early but intermittent up-regulation of GRO/melanoma growth stimulatory activity gene and inducible protein 10 gene expression, while macrophage inflammatory protein 2 (MIP-2) and especially MCP-1 were up-regulated only at late time points. By comparison, primary RSV infection or BBG2Na priming resulted in considerably lower eotaxin and MCP-3 gene expression increases postchallenge, while expression of lymphocyte or monocyte chemoattractant chemokine genes (MIP-1beta, MCP-1, and MIP-2) were of higher magnitude and kinetics at early, but not late, time points. Our combined histopathologic and chemokine gene expression data provide a basis for differentiating between aberrant FI-RSV-induced immune responses and normal responses associated with RSV infection in the mouse model. Consequently, our data suggest that BBG2Na may constitute a safe RSV subunit vaccine for use in seronegative infants.  相似文献   
129.
Self Organized Terminode Routing   总被引:2,自引:0,他引:2  
We consider the problem of routing in a wide area mobile ad hoc network called Terminode Network. Routing in this network is designed with the following objectives. First, it should scale well in terms of the number of nodes and geographical coverage; second, routing should have scalable mechanisms that cope with the dynamicity in the network due to mobility; and third, nodes need to be highly collaborative and redundant, but, most of all, cannot use complex algorithms or protocols. Our routing scheme is a combination of two protocols called Terminode Local Routing (TLR) and Terminode Remote Routing (TRR). TLR is used to route packets to close destinations. TRR is used to route to remote destinations. The combination of TLR and TRR has the following features: (1) it is highly scalable because every node relies only on itself and a small number of other nodes for packet forwarding; (2) it acts and reacts well to the dynamicity of the network because as a rule multipath routing is considered; and (3) it can be implemented and run in very simple devices because the algorithms and protocols are very simple and based on high collaboration. We performed simulations of the TLR and TRR protocols using the GloMoSim simulator. The simulation results for a large, highly mobile ad hoc environment demonstrate benefits of the combination of TLR and TRR over an existing protocol that uses geographical information for packet forwarding.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号