首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   35篇
  788篇
  2023年   2篇
  2022年   6篇
  2021年   17篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   9篇
  2016年   14篇
  2015年   36篇
  2014年   26篇
  2013年   55篇
  2012年   63篇
  2011年   57篇
  2010年   27篇
  2009年   36篇
  2008年   57篇
  2007年   50篇
  2006年   41篇
  2005年   38篇
  2004年   49篇
  2003年   38篇
  2002年   35篇
  2001年   10篇
  2000年   6篇
  1999年   10篇
  1998年   5篇
  1997年   7篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有788条查询结果,搜索用时 15 毫秒
91.
The polar localization of signaling proteins that are essential for Caulobacter cell cycle control is temporally regulated. Here we provide evidence that phosphorylation of the essential response regulator, DivK, is required for both its function and its cell cycle-regulated localization. The asymmetric location of the DivJ and PleC histidine kinases and their antagonistic activities on the cellular concentration of phosphorylated DivK provide positional and temporal information for the ordered sequence of DivK localization during the cell cycle. DivJ activity on DivK affects its correct localization, which, in turn, is required for PleC function. Since DivJ and PleC regulate different cell cycle events, the interconnected function of these two histidine kinases through localization of a common response regulator provides a mechanism for coordinating cell cycle progression. Study of a DivK homolog in the morphologically symmetric bacterium Sinorhizobium meliloti suggests that this type of cell cycle mechanism is widespread in prokaryotes.  相似文献   
92.
Nucleoplasmin is one of the most abundant proteins in Xenopus laevis oocytes, and it has been involved in the chromatin remodeling that takes place immediately after fertilization. This molecule has been shown to be responsible for the removal of the sperm-specific proteins and deposition of somatic histones onto the male pronuclear chromatin. To better understand the latter process, we have used sedimentation velocity, sedimentation equilibrium, and sucrose gradient fractionation analysis to show that the pentameric form of nucleoplasmin binds to a histone octamer equivalent consisting of equal amounts of the four core histones, H2A, H2B, H3, and H4, without any noticeable preference for any of these proteins. Removal of the histone N-terminal "tail" domains or the major C-terminal polyglutamic tracts of nucleoplasmin did not alter these binding properties. These results indicate that interactions other than those electrostatic in nature (likely hydrophobic) also play a critical role in the formation of the complex between the negatively charged nucleoplasmin and positively charged histones. Although the association of histones with nucleoplasmin may involve some ionic interactions, the interaction process is not electrostatically driven.  相似文献   
93.
For more than two decades, it has been the dogma that the males of pollinating fig wasps do not fight and that they only mate in their native fig. Their extreme degree of local mating leads to highly female biased sex ratios that should eliminate the benefits of fighting and dispersal by males. Furthermore, males sharing a fig are often brothers, and fighting may be barred by kin selection. Therefore, theory supported the presumed absence of fighting and dispersal in pollinating fig wasp males. However, we report here that in pollinating fig wasps, fighting between brothers evolved at least four and possibly six time, and dispersal by males at least twice. This finding supports the idea that competition between relatives can cancel the ameliorating effects of relatedness. The explanation to this evolutionary puzzle, as well as the consequences of male dispersal and fighting, opens the doors to exciting new research.  相似文献   
94.
Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drug's target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which determinants remains elusive. To quantify the direct role of the env context in resistance to enfuvirtide and in viral infectivity, we compared enfuvirtide susceptibility and infectivity of recombinant viral pairs harboring the HR1-HR2 region or the full Env ectodomain of longitudinal env clones from 5 heavily treated patients failing enfuvirtide therapy. Prior to enfuvirtide treatment onset, no env carried known resistance mutations and full Env viruses were on average less susceptible than HR1-HR2 recombinants. All escape clones carried at least one of G36D, V38A, N42D and/or N43D/S in HR1, and accordingly, resistance increased 11- to 2800-fold relative to baseline. Resistance of full Env recombinant viruses was similar to resistance of their HR1-HR2 counterpart, indicating that HR1 and HR2 are the main contributors to resistance. Strictly X4 viruses were more resistant than strictly R5 viruses, while dual-tropic Envs featured similar resistance levels irrespective of the coreceptor expressed by the cell line used. Full Env recombinants from all patients gained infectivity under prolonged drug pressure; for HR1-HR2 viruses, infectivity remained steady for 3/5 patients, while for 2/5 patients, gains in infectivity paralleled those of the corresponding full Env recombinants, indicating that the env genetic context accounts mainly for infectivity adjustments. Phylogenetic analyses revealed that quasispecies selection is a step-wise process where selection of enfuvirtide resistance is a dominant factor early during therapy, while increased infectivity is the prominent driver under prolonged therapy.  相似文献   
95.
Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with a series of aromatic, arylalkenyl- and arylalkylboronic acids was investigated. Aromatic, 4-phenylsubstituted- and 2-naphthylboronic acids were the best Can2 inhibitors, with inhibition constants in the range of 8.5–11.5 μM, whereas arylalkenyl and aryalkylboronic acids showed KIs in the range of 428–3040 μM. Nce103 showed a similar inhibition profile, with the 4-phenylsubstituted- and 2-naphthylboronic acids possessing KIs in the range of 7.8–42.3 μM, whereas the arylalkenyl and aryalkylboronic acids were weaker inhibitors (KIs of 412–5210 μM). The host human enzymes CA I and II were also effectively inhibited by these boronic acids. The B(OH)2 moiety is thus a new zinc-binding group for designing effective inhibitors of the α- and β-CAs.  相似文献   
96.
Elucidation of the mechanisms controlling early development and organogenesis is currently progressing in several model species and a new field of research, evolutionary developmental biology, which integrates developmental and comparative approaches, has emerged. Although the expression pattern of many genes during tooth development in mammals is known, data on other lineages are virtually non-existent. Comparison of tooth development, and particularly of gene expression (and function) during tooth morphogenesis and differentiation, in representative species of various vertebrate lineages is a prerequisite to understand what makes one tooth different from another. Amphibians appear to be good candidates for such research for several reasons: tooth structure is similar to that in mammals, teeth are renewed continuously during life (=polyphyodonty), some species are easy to breed in the laboratory, and a large amount of morphological data are already available on diverse aspects of tooth biology in various species. The aim of this review is to evaluate current knowledge on amphibian teeth, principally concerning tooth development and replacement (including resorption), and changes in morphology and structure during ontogeny and metamorphosis. Throughout this review we highlight important questions which remain to be answered and that could be addressed using comparative morphological studies and molecular techniques. We illustrate several aspects of amphibian tooth biology using data obtained for the caudate Pleurodeles waltl. This salamander has been used extensively in experimental embryology research during the past century and appears to be one of the most favourable amphibian species to use as a model in studies of tooth development.  相似文献   
97.
The discovery of the miRNA pathway revealed a new layer of molecular control of biological processes. To uncover new functions of this gene regulatory pathway, we undertook the characterization of the two miRNA-specific Argonaute proteins in Caenorhabditis elegans, ALG-1 and ALG-2. We first observed that the loss-of-function of alg-1 and alg-2 genes resulted in reduced progeny number. An extensive analysis of the germline of these mutants revealed a reduced mitotic region, indicating fewer proliferating germ cells. We also observed an early entry into meiosis in alg-1 and alg-2 mutant animals. We detected ALG-1 and ALG-2 protein expressions in the distal tip cell (DTC), a specialized cell located at the tip of both C. elegans gonadal arms that regulates mitosis-meiosis transition. Re-establishing the expression of alg-1 specifically in the DTC of mutant animals partially rescued the observed germline defects. Further analyses also support the implication of the miRNA pathway in gametogenesis. Interestingly, we observed that disruption of five miRNAs expressed in the DTC led to similar phenotypes. Finally, gene expression analysis of alg-1 mutant gonads suggests that the miRNA pathway is involved in the regulation of different pathways important for germline proliferation and differentiation. Collectively, our data indicate that the miRNA pathway plays a crucial role in the control of germ cell biogenesis in C. elegans.  相似文献   
98.
Docking programs can generate subsets of a compound collection with an increased percentage of actives against a target (enrichment) by predicting their binding mode (pose) and affinity (score), and retrieving those with the highest scores. Using the QXP and GOLD programs, we compared the ability of six single scoring functions (PLP, Ligscore, Ludi, Jain, ChemScore, PMF) and four composite scoring models (Mean Rank: MR, Rank-by-Vote: Vt, Bayesian Statistics: BS and PLS Discriminant Analysis: DA) to separate compounds that are active against CDK2 from inactives. We determined the enrichment for the entire set of actives (IC50 < 10 microM) and for three activity subsets. In all cases, the enrichment for each subset was lower than for the entire set of actives. QXP outperformed GOLD at pose prediction, but yielded only moderately better enrichments. Five to six scoring functions yielded good enrichments with GOLD poses, while typically only two worked well with QXP poses. For each program, two scoring functions generally performed better than the others (Ligscore2 and Ludi for GOLD; QXP and Jain for QXP). Composite scoring functions yielded better results than single scoring functions. The consensus approaches MR and Vt worked best when separating micromolar inhibitors from inactives. The statistical approaches BS and DA, which require training data, performed best when distinguishing between low and high nanomolar inhibitors. The key observation that all hit rate profiles for all four activity intervals for all scoring schemes for both programs are significantly better than random, is evidence that docking can be successfully applied to enrich compound collections.  相似文献   
99.
Using a density gradient medium (Percoll) we succeeded in isolating homogeneous cell populations from the stromal-vascular fraction of the inguinal tissue of 3-day-old rats. In primary culture, in medium 199 supplemented with 10% fetal calf serum and 5.5 mM glucose, almost complete differentiation (90%) of these fractions was obtained for the first time in presence of a physiological concentration of insulin (10?9 M). During the adipose conversion, insulin markedly enhanced the activities of glycerol-3-phosphate dehydrogenase and acid:CoA ligase. When VLDL and heparin were added with insulin to the medium, this effect was not potentiated. On the contrary, VLDL and heparin in presence of insulin increased the triglyceride content of the cells. With VLDL and heparin only, the biochemical and morphological characteristics of the cells were very similar to those observed in control culture. The heavier fraction was morphologically heterogeneous and did not undergo the adipose conversion to the same extent as the two lighter fractions. It was concluded that this model could be helpful in studying the proliferation and the differentiation of preadipocytes at an early stage of development.  相似文献   
100.
Neuron-glia interactions are essential for synaptic function, and glial glutamate (re)uptake plays a key role at glutamatergic synapses. In knockout mice, for either glial glutamate transporters, GLAST or GLT-1, a classical metabolic response to synaptic activation (i.e., enhancement of glucose utilization) is decreased at an early functional stage in the somatosensory barrel cortex following activation of whiskers. Investigation in vitro demonstrates that glial glutamate transport represents a critical step for triggering enhanced glucose utilization, but also lactate release from astrocytes through a mechanism involving changes in intracellular Na(+) concentration. These data suggest that a metabolic crosstalk takes place between neurons and astrocytes in the developing cortex, which would be regulated by synaptic activity and mediated by glial glutamate transporters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号