首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   17篇
  国内免费   3篇
  2022年   2篇
  2015年   6篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   10篇
  2006年   14篇
  2005年   9篇
  2004年   11篇
  2003年   10篇
  2002年   6篇
  2001年   7篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
51.
We have previously developed a unique 8-amino acid Aβ42 oligomer-Interacting Peptide (AIP) as a novel anti-amyloid strategy for the treatment of Alzheimer’s disease. Our lead candidate has successfully progressed from test tubes (i.e., in vitro characterization of protease-resistant D-AIP) to transgenic flies (i.e., in vivo rescue of human Aβ42-mediated toxicity via D-AIP-supplemented food). In the present study, we examined D-AIP in terms of its stability in multiple biological matrices (i.e., ex-vivo mouse plasma, whole blood, and liver S9 fractions) using MALDI mass spectrometry, pharmacokinetics using a rapid and sensitive LC-MS method, and blood brain barrier (BBB) penetrance in WT C57LB/6 mice. D-AIP was found to be relatively stable over 3 h at 37 °C in all matrices tested. Finally, label-free MALDI imaging showed that orally administered D-AIP can readily penetrate the intact BBB in both male and female WT mice. Based upon the favorable stability, pharmacokinetics, and BBB penetration outcomes for orally administered D-AIP in WT mice, we then examined the effect of D-AIP on amyloid “seeding” in vitro (i.e., freshly monomerized versus preaggregated Aβ42). Complementary biophysical assays (ThT, TEM, and MALDI-TOF MS) showed that D-AIP can directly interact with synthetic Aβ42 aggregates to disrupt primary and/or secondary seeding events. Taken together, the unique mechanistic and desired therapeutic potential of our lead D-AIP candidate warrants further investigation, that is, testing of D-AIP efficacy on the altered amyloid/tau pathology in transgenic mouse models of Alzheimer’s disease.  相似文献   
52.
The removal of phenol, ortho- (o-) and para- (p-)cresol was studied with two series of UASB reactors using unacclimatized granular sludges bioaugmented with a consortium enriched against these substances. The parameters studied were the amount of inoculum added to the sludges and the method of immobilization of the inoculum. Two methods were used, adsorption to the biomass or encapsulation within calcium alginate beads. In the bioaugmentation by adsorption experiment, and with a 10% inoculum, complete phenol removal was obtained after 36 d, while 178 d were required in the control reactor. For p-cresol, 95% removal was obtained in the bioaugmented reactor on day 48 while 60 d were required to achieve 90% removal in the control reactor. For o-cresol, the removals were only marginally better with the bioaugmented reactors. Tests performed with the reactors biomass under non-limiting substrate concentrations showed that the specific activities of the bioaugmented biomasses were larger than the original biomass for phenol, and p-cresol even after 276 of operations, showing that the inoculum bacteria successfully colonized the sludge granules. Immobilization of the inoculum by encapsulation in calcium alginate beads, was performed with 10% of the inoculum. Results showed that the best activities were obtained when the consortium was encapsulated alone and the beads added to the sludges. This reactor presented excellent activity and the highest removal of the various phenolic compounds a few days after start-up. After 90 d, a high-phenolic compounds removal was still observed, demonstrating the effectiveness of the encapsulation technique for the start-up and maintenance of high-removal activities.  相似文献   
53.
We recently demonstrated that Campylobacter jejuni produces a capsular polysaccharide (CPS) that is the major antigenic component of the classical Penner serotyping system distinguishing Campylobacter into >60 groups. Although the wide variety of C. jejuni serotypes are suggestive of structural differences in CPS, the genetic mechanisms of such differences are unknown. In this study we sequenced biosynthetic cps regions, ranging in size from 15 to 34 kb, from selected C. jejuni strains of HS:1, HS:19, HS:23, HS:36, HS:23/36 and HS:41 serotypes. Comparison of the determined cps sequences of the HS:1, HS:19 and HS:41 strains with the sequenced strain, NCTC11168 (HS:2), provides evidence for multiple mechanisms of structural variation including exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and contingency gene variation. In contrast, the HS:23, HS:36 and HS:23/36 cps sequences were highly conserved. We report the first detailed structural analysis of 81-176 (HS:23/36) and G1 (HS:1) and refine the previous structural interpretations of the HS:19, HS:23, HS:36 and HS:41 serostrains. For the first time, we demonstrate the commonality and function of a second heptose biosynthetic pathway for Campylobacter CPS independent of the pathway for lipooligosaccharide (LOS) biosynthesis and identify a novel heptosyltransferase utilized by this alternate pathway. Furthermore, we show the retention of two functional heptose isomerases in Campylobacter and the sharing of a phosphatase for both LOS and CPS heptose biosynthesis.  相似文献   
54.
Activity screening and insertional inactivation of lipopolysaccharide (LPS) biosynthetic genes in Helicobacter pylori have led to the successful characterization of two key enzymes encoded by HP0159 (JHP0147) and HP1105 (JHP1032) open reading frames (ORFs) which are members of the large and diverse carbohydrate active enzymes (CAZY) GT-8 (rfaJ) family of glycosyltransferases. Activity screening of a genomic library led to the identification of the enzyme involved in the biosynthesis of the type 2 N-acetyl-lactosamine O-chain backbone, the beta-1,3-N-acetyl-glucosaminyl transferase. In addition, the activity screening approach led to the identification and characterization of a key core biosynthetic enzyme responsible for the biosynthesis of the alpha-1,6-glucan polymer. This alpha-1,6-glucosyltransferase protein is encoded by the HP0159 ORF. Both enzymes play an integral part in the biosynthesis of LPS, and insertional inactivation leads to the production of a truncated LPS molecule on the bacterial cell surface. The LPS structures were determined by mass spectrometry and chemical analyses. The linkage specificity of each glycosyltransferase was determined by nuclear magnetic resonance (NMR) analysis of model compounds synthesized in vitro. A cryogenic probe was used to structurally characterize nanomole amounts of the product of the HP1105 (JHP1032) enzyme. In contrast to the HP0159 enzyme, which displays the GT-8-predicted retaining stereochemistry for the reaction product, HP1105 (JHP1032) is the first member of this GT-8 family to have been shown to have an inverting stereochemistry in its reaction products.  相似文献   
55.
The giant freshwater prawn Macrobrachium rosenbergii is cultivated essentially in Southern and South-eastern Asian countries such as continental China, India, Thailand and Taiwan. To date, only two viral agents have been reported from this prawn. The first (HPV-type virus) was observed by chance 25 years ago in hypertrophied nuclei of hepatopancreatic epithelial cells and is closely related to members of the Parvoviridae family. The second, a nodavirus named MrNV, is always associated with a non-autonomous satellite-like virus (XSV), and is the origin of so-called white tail disease (WTD) responsible for mass mortalities and important economic losses in hatcheries and farms for over a decade. After isolation and purification of these two particles, they were physico-chemically characterized and their genome sequenced. The MrNV genome is formed with two single linear ss-RNA molecules, 3202 and 1250 nucleotides long, respectively. Each RNA segment contains only one ORF, ORF1 coding for the RNA-dependant RNA polymerase located on the long segment and ORF2 coding for the structural protein CP-43 located on the small one. The XSV genome (linear ss-RNA), 796 nucleotides long, contains a single ORF coding for the XSV coat protein CP-17. The XSV does not contain any RdRp gene and consequently needs the MrNV polymerase to replicate.  相似文献   
56.
Viral diseases in commercially exploited crabs: a review   总被引:1,自引:0,他引:1  
Viruses and viral diseases of crabs were observed and investigated earlier than the first observation of viruses in shrimp. In fact, crabs were used as biological models to investigate crustacean virology at the beginning of shrimp aquaculture development. More than 30 viruses have been reported in crabs, including those related to the known virus families Reoviridae, Bunyaviridae, Roniviridae and a group of Bacilliform enveloped nuclear viruses. This review reports data on several important viral diseases of crabs, particularly those associated with pathology of organs and tissues of commercially and ecologically significant host species.  相似文献   
57.
Glycosylation of Campylobacter flagellin is required for the biogenesis of a functional flagella filament. Recently, we used a targeted metabolomics approach using mass spectrometry and NMR to identify changes in the metabolic profile of wild type and mutants in the flagellar glycosylation locus, characterize novel metabolites, and assign function to genes to define the pseudaminic acid biosynthetic pathway in Campylobacter jejuni 81-176 (McNally, D. J., Hui, J. P., Aubry, A. J., Mui, K. K., Guerry, P., Brisson, J. R., Logan, S. M., and Soo, E. C. (2006) J. Biol. Chem. 281, 18489-18498). In this study, we use a similar approach to further define the glycome and metabolomic complement of nucleotide-activated sugars in Campylobacter coli VC167. Herein we demonstrate that, in addition to CMP-pseudaminic acid, C. coli VC167 also produces two structurally distinct nucleotide-activated nonulosonate sugars that were observed as negative ions at m/z 637 and m/z 651 (CMP-315 and CMP-329). Hydrophilic interaction liquid chromatography-mass spectrometry yielded suitable amounts of the pure sugar nucleotides for NMR spectroscopy using a cold probe. Structural analysis in conjunction with molecular modeling identified the sugar moieties as acetamidino and N-methylacetimidoyl derivatives of legionaminic acid (Leg5Am7Ac and Leg5AmNMe7Ac). Targeted metabolomic analyses of isogenic mutants established a role for the ptmA-F genes and defined two new ptm genes in this locus as legionaminic acid biosynthetic enzymes. This is the first report of legionaminic acid in Campylobacter sp. and the first report of legionaminic acid derivatives as modifications on a protein.  相似文献   
58.
Recent experiments to fossilize microorganisms using silica have shown that the fossilization process is far more complex than originally thought; microorganisms not only play an active role in silica precipitation but may also remain alive while silica is precipitating on their cell wall. To better understand the mechanisms that lead to the preservation of fossilized microbes in recent and ancient rocks, we experimentally silicified a Gram-positive bacterium, Geobacillus SP7A, over a period of five years. The microbial response to experimental fossilization was monitored with the use of LIVE/DEAD staining to assess the structural integrity of the cells during fossilization. It documented the crucial role of silicification on the preservation of the cells and of their structural integrity after several years. Electron microscopy observations showed that initial fossilization of Gram-positive bacteria was extremely rapid, thus allowing very good preservation of Geobacillus SP7A cells. A thick layer of silica was deposited on the outer surface of cell walls in the earliest phase of silicification before invading the cytoplasmic space. Eventually, the cell wall was the only recognizable feature. Heavily mineralized cells thus showed morphological similarities with natural microfossils found in the rock record.  相似文献   
59.
An RNA guanylyltransferase activity is involved in the synthesis of the cap structure found at the 5' end of eukaryotic mRNAs. The RNA guanylyltransferase activity is a two-step ping-pong reaction in which the enzyme first reacts with GTP to produce the enzyme-GMP covalent intermediate with the concomitant release of pyrophosphate. In the second step of the reaction, the GMP moiety is then transferred to a diphosphorylated RNA. Both reactions were previously shown to be reversible. In this study, we report a biochemical and thermodynamic characterization of both steps of the reaction of the RNA guanylyltransferase from Paramecium bursaria Chlorella virus 1, the prototype of a family of viruses infecting green algae. Using a combination of real-time fluorescence spectroscopy, radioactive kinetic assays, and inhibition assays, the complete kinetic parameters of the RNA guanylyltransferase were determined. We produced a thermodynamic scheme for the progress of the reaction as a function of the energies involved in each step. We were able to demonstrate that the second step comprises the limiting steps for both the direct and reverse overall reactions. In both cases, the binding to the RNA substrates is the step requiring the highest energy and generating unstable intermediates that will promote the catalytic activites of the enzyme. This study reports the first thorough kinetic and thermodynamic characterization of the reaction catalyzed by an RNA capping enzyme.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号