首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   17篇
  国内免费   3篇
  160篇
  2022年   2篇
  2015年   6篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   10篇
  2006年   14篇
  2005年   9篇
  2004年   11篇
  2003年   10篇
  2002年   6篇
  2001年   7篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有160条查询结果,搜索用时 0 毫秒
151.
Ribavirin is a guanosine ribonucleoside analog that displays broad-spectrum anti-viral activity and is currently used for the treatment of some viral infections. Ribavirin has recently been proposed to also be a mimic of the 7-methyl guanosine cap found at the 5' end of mRNAs. To obtain supporting functional data for this hypothesis, we assessed the ability of ribavirin triphosphate to interfere with the interaction between eIF4E and 7-methyl guanosine capped mRNA. In chemical cross-linking assays, cap-affinity chromatography, and cap-dependent translation assays, ribavirin was unable to function as a cap analog.  相似文献   
152.
153.
Two different anerobic consortia, one removing phenol and ortho (o-) cresol and other removing para(p-) cresol, were cultivated in serum bottles using whey as cosubstrate substitute for proteose peptone. Phenol and p-cresol removal with the phenol-removing consortium were the same with 0.0125% (w/v) whey as with 0.05% proteose peptone. For the other consortium, 8 days were required to decrease the p-cresol concentration from 35 to 2 mg/L with 0.025% whey, while 35 days were required to achieve a similar removal with 0.5% proteose peptone. The two consortia were mixed and cultivated with 0.025% whey. Phenolic compound removal with the mixed consortia was as good as that achieved by each of the two initial consortia against their respective substrates. This removal activity was maintained after several transfers. In a continuous upflow fixed-film reactor, the mixed consortia removed over 98% of 150 mg/L of phenol and 35 mg/L of each o- and p-cresol in the influent at 29 degrees C, with 0.025% whey as cosubstrate. The hydraulic retention time (HRT) was 0.25 day, corresponding to a phenolic compound volumic loading rate of 880 mg/(L of reactor x day). Once the continuous flow reactor achieved constant phenolic compound removal, no intermediates were found in the effluent, while in serum bottles, m-toluic acid, an o-cresol intermediate, accumulated. Measurements of the specific activity for the uptake of different substrates demonstrated the presence of all trophic groups involved in methanogenic fermentation. These activities were, in mg of substrate/(g of volatile suspended solids x day), as follows: 849 +/- 25 for the acidogens; 554 +/- 15 for the acetogens; 934 +/- 37 for the aceticlastic methanogens; and 135 +/- 15 for the hydrogenophilic methanogens. Electron micrographs of the mixed consortia showed seven different morphological bacterial types, including Methanotrix-like bacteria.  相似文献   
154.
155.
156.

Background  

Following increased rates of human campylobacteriosis in the late 1990's, and their apparent association with increased consumption of fresh chicken meat, a longitudinal study was conducted in Iceland to identify the means to decrease the frequency of broiler flock colonization with Campylobacter. Our objective in this study was to identify risk factors for flock colonization acting at the broiler farm level.  相似文献   
157.
Decapping enzymes are required for the removal of the 5′-end m7GpppN cap of mRNAs to allow their decay in cells. While many cap-binding proteins recognize the cap structure via the stacking of the methylated guanosine ring between two aromatic residues, the precise mechanism of cap recognition by decapping enzymes has yet to be determined. In order to get insights into the interaction of decapping enzymes with the cap structure, we studied the vaccinia virus D10 decapping enzyme as a model to investigate the important features for substrate recognition by the enzyme. We demonstrate that a number of chemically modified purines can competitively inhibit the decapping reaction, highlighting the molecular features of the cap structure that are required for recognition by the enzyme, such as the nature of the moiety at positions 2 and 6 of the guanine base. A 3D structural model of the D10 protein was generated which suggests amino acids implicated in cap binding. Consequently, we expressed 17 mutant proteins with amino acid substitutions in the active site of D10 and found that eight are critical for the decapping activity. These data underscore the functional features involved in the non-canonical cap-recognition by the vaccinia virus D10 decapping enzyme.  相似文献   
158.
The metabolism of o-cresol under methanogenic conditions by an anaerobic consortium known to carboxylate phenol to benzoate was investigated. After incubation with the consortium at 29 degrees C for 59 days, o-cresol was transformed to 3-methylbenzoic acid, which was not further metabolized by the consortium. Proteose peptone in the culture medium was essential for the transformation of o-cresol. In addition, a transient compound detected in the culture was identified as 4-hydroxy-3-methylbenzoic acid. o-Cresol-6d was transformed by the consortium to deuterated hydroxy-methylbenzoic acid and deuterated methylbenzoic acid. These results demonstrate that o-cresol is carboxylated in the para position relative to the phenolic hydroxyl group and dehydroxylated by the anaerobic consortium.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号