首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3628篇
  免费   250篇
  2021年   25篇
  2020年   17篇
  2018年   19篇
  2017年   22篇
  2016年   62篇
  2015年   80篇
  2014年   109篇
  2013年   163篇
  2012年   180篇
  2011年   203篇
  2010年   140篇
  2009年   136篇
  2008年   216篇
  2007年   235篇
  2006年   206篇
  2005年   213篇
  2004年   210篇
  2003年   220篇
  2002年   225篇
  2001年   56篇
  2000年   40篇
  1999年   61篇
  1998年   81篇
  1997年   61篇
  1996年   45篇
  1995年   54篇
  1994年   42篇
  1993年   39篇
  1992年   50篇
  1991年   30篇
  1990年   41篇
  1989年   31篇
  1988年   38篇
  1987年   34篇
  1986年   29篇
  1985年   35篇
  1984年   33篇
  1983年   32篇
  1982年   37篇
  1981年   30篇
  1980年   23篇
  1979年   20篇
  1978年   23篇
  1977年   28篇
  1976年   33篇
  1975年   32篇
  1974年   31篇
  1973年   22篇
  1972年   16篇
  1970年   13篇
排序方式: 共有3878条查询结果,搜索用时 296 毫秒
831.
Summary To date, it is still unknown whether the metabolism of purine nucleotides and nucleosides plays an important role in the pineal organ of lower vertebrates. We have therefore investigated the sites of 5-nucleotidase activity in the pineal organ of the pike (Esox lucius L.). Various ultracytochemical procedures were used. An intense ecto-5-nucleotidase activity was characteristic of the entire plasma membrane of the phototransducers (cone-like and modified photoreceptor elements) and the interstitial cells, with exception of the portions facing the basal lamina of the pericapillary spaces. Additionally, intracellular sites of activity were also visualized in the inner segment and the pedicle of the phototransducers. Most of the intracellular deposits were apparently cytosolic and only few seemed to be associated with the membrane of the clear synaptic vesicles of the pedicle. Phagocytotic cells in the pineal lumen also showed a strong enzymatic activity on the outer surface of their plasmalemma (in ectoposition). This was apparently not the case for the cell types of the tissues surrounding the pineal vesicle. The present study emphasizes the importance of the occurrence and metabolism of purine nucleotides and nucleosides in a photoreceptive pineal organ.  相似文献   
832.
Summary Small trypsinized explants from ventral skin of frogs (Rana esculenta) were maintained in culture for 4 days during which a newly formed epithelium differentiated along the cut edges of the dermis. During the first 6 h adjacent cells produced numerous interdigitating lamellipodia. After 2 days, epithelial polarity was restored by the formation of zonulae occludentes and the epithelial cells were joined by a few small newly formed desmosomes and by numerous interdigitations. Bipartite junctional complexes consisting of a zonula occludens, followed by a series of typical desmosomes, and characteristic of adult frog epidermis were formed only after 4 days. When cultured in the presence of an inhibitor of protein synthesis (cycloheximide) the trypsinized epidermis no longer formed desmosomes. Therefore pools of one or more crucial desmosomal proteins must be very low or non-existent. However, cycloheximide did not prevent the formation of cell contact specializations, consisting of a highly developed system of complex lamellar interdigitations, between adjacent cells.  相似文献   
833.
In the small intestine of the rabbit the process of Na+-dependent uptake of phosphate occurs only at the brush-border of duodenal enterocytes. Li+ can replace Na+. The process is activated when either K+, Cs+, Rb+, or choline is present in the intravesicular space. The presence of membrane-permeable anions is essential for maximum rates of phosphate transport. We conclude that the mechanism of the phosphate carrier is electrogenic at pH 6–8, probably two Na+ moving with each H2PO 4 . This. will lead to the development of a positive charge within the vesicle. The variation of theK m for H2PO 4 with pH is thought to be the consequence of the affinity of the carrier protein for H2PO 4 increasing as the pH increases. Polyclonal antibodies against membrane vesicles isolated from rabbit duodenum, jejunum, and ileum were prepared. The antibodies raised against the ileum and jejunum both activated the phosphate transport process, while the anti-duodenum antibody preparation inhibited phosphate transport.  相似文献   
834.
Lactobacillus bulgaricus LT4(0448) is a lysogenic strain from which a temperate bacteriophage can be induced by mitomycin C or UV irradiation. Lactobacillus lactis CNRZ 326 is an indicator strain for the temperate phage 0448, but this strain lyses only in the presence of Ca2+ ions. A resistant culture developed secondarily after phage lysis and grew normally in MRS broth but again lysed abruptly if Ca2+ ions were added after two or three transfers. This behavior of the secondary culture and its subcultures is explained by a heterogeneous and fluctuating bacterial population, including clones identical to L. lactis 326, which were sensitive to 0448 and which formed rough colonies, as does the indicator. The proportion of these clones increased in the course of transfers in MRS, explaining lysis when Ca2+ was added. The population also included clones which formed smooth colonies (S clones). SI clones, which could not be induced by mitomycin C, were the major type in the initial culture, although they were sensitive to temperate phage 0448. The SI population then decreased and was gradually replaced by SII clones, inducible by mitomycin C and resistant to 0448. These SII clones were lysogenized clones, 326(0448), whose stability was confirmed by growth in the presence of an antiphage serum. When L. bulgaricus LT4(0448) was treated with mitomycin C, several cured LT4 clones were obtained that were related to the clones of the indicator L. lactis 326; they formed rough colonies. They also became sensitive to lytic phages or temperate phages active against L. lactis 326 and insensitive to lytic phages which lysed L. bulgaricus LT4(0448). This suggests that phage 0448 can lead to a lysogenic conversion of host strain LT4.  相似文献   
835.
Higher order structure of chloroplastic 5S ribosomal RNA from spinach   总被引:4,自引:0,他引:4  
The secondary and tertiary structure of chloroplastic 5S ribosomal RNA from spinach was investigated by the use of several chemical and enzymatic structure probes. The four bases were monitored at one of their Watson-Crick base-pairing positions with dimethyl sulfate [at A(N1) and C(N3)] and with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate [at G(N1) and U(N3)]. Position N7 of purines was probed with diethyl pyrocarbonate (adenines) and with dimethyl sulfate (guanines). Ethylnitrosourea was used to probe phosphate involved in tertiary interaction or in cation coordination. In order to estimate the degree of stability of helices, the various chemical reagents were employed under "native" conditions (300 mM KCl and 20 mM magnesium at 37 degrees C), under "semidenaturing" conditions [1 mM ethylenediaminetetraacetic acid (EDTA) at 37 degrees C], and under denaturing conditions (1 mM EDTA at 90 degrees C). Unstructured regions were also tested with single-strand-specific nucleases T1, U2, and S1 and double-stranded or stacked regions with RNase V1 from cobra Naja naja oxiana venom. The results confirm the existence of the five helices and the two external loops proposed in the consensus model of 5S rRNA. However, the regions depicted as unpaired internal loops appear to be folded into a more complex conformation. A three-dimensional model derived from the present data and graphic modeling for a region encompassing helix IV, helix V, loop D, and loop E (nucleotides 70-110) is proposed. Nucleotides in the so-called loop E (73-79/100-106) display unusual features: Noncanonical base pairs (A-A and A-G) are formed, and three nucleotides (C75, U78, and U105) are bulging out. This region adopts an unwound and extended conformation that can be well suited for tertiary interactions or for protein binding. Several bases and phosphates candidate for the tertiary folding of the RNA were also identified.  相似文献   
836.
The nucleotide residues involved in the cross-link between P site bound acetylvalyl-tRNA (AcVal-tRNA) and 16-18S rRNA have been identified. This cross-link was formed by irradiation of Escherichia coli or Bacillus subtilis AcVal-tRNA bound to the P site of E. coli ribosomes or by irradiation of E. coli AcVal-tRNA bound to the P site of yeast ribosomes. The three cross-linked RNA heterodimers were obtained in 10-35% purity by disruption of the irradiated ribosome-tRNA complex with sodium dodecyl sulfate followed by sucrose gradient centrifugation. After total digestion with RNase T1, and labeling at either the 5'- or the 3'-end, the cross-linked oligomers could be identified and isolated before and after photolytic splitting of the cross-link. One of the oligomers was shown to be UACACACCG, a unique rRNA nonamer present in an evolutionarily conserved region. This oligomer was found in all three heterodimers. The other oligomer of the dimer had the sequence expected for the RNase T1 product encompassing the anticodon of the tRNA used. The precise site of cross-linking was determined by two novel methods. Bisulfite modification of the oligonucleotide dimer converted all C residues to U, except for any cross-linked C which would be resistant by being part of a cyclobutane dimer. Sequencing gel analysis of the UACACACCG oligomer showed that the C residue protected was the 3'-penultimate C residue, C1400 in E. coli rRNA or C1626 in yeast rRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
837.
The mechanism of activation of thioredoxin-linked NADP-malate dehydrogenase was investigated by using 14C-iodoacetate and 14C-dansylated thioredoxin m, and Sepharose affinity columns (thioredoxin m, NADP-malate dehydrogenase) as probes to monitor enzyme sulfhydryl status and enzyme-thioredoxin interaction. The data indicate that NADP-malate dehydrogenase, purified to homogeneity from corn leaves, is activated by a net transfer of reducing equivalents from thioredoxin m, reduced by dithiothreitol, to enzyme disulfide groups, thereby yielding oxidized thioredoxin m and reduced enzyme. The appearance of new sulfhydryl groups that accompanies the activation of NADP-malate dehydrogenase appears to involve a structural change that is independent of the formation of a stable complex between the enzyme and reduced thioredoxin m. The data are consistent with the conclusion that oxygen promotes deactivation of NADP-malate dehydrogenase through oxidation of SH groups on reduced thioredoxin and on the reduced (activated) enzyme.  相似文献   
838.
A glucan elicitor from cell walls of the fungus Phytophthora megasperma f. sp. glycinea, a pathogen of soybean (Glycine max), induced large and rapid increases in the activities of enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, and of the flavonoid pathway, acetyl-CoA carboxylase and chalcone synthase, in suspension-cultured soybean cells. The changes in phenylalanine ammonia-lyase and chalcone synthase activities were correlated with corresponding changes in the mRNA activities encoding these enzymes, as determined by enzyme synthesis in vitro in a mRNA-dependent reticulocyte lysate. The time courses of the elicitor-induced changes in mRNA activities for both enzymes were very similar with respect to each other. Following the onset of induction, the two mRNA activities increased significantly at 3 h, reached highest levels at 5 to 7 h, and subsequently returned to low values at 10 h. Similar degrees of induction of mRNA activities and of the catalytic activities of phenylalanine ammonia-lyase and chalcone synthase were observed in response to three diverse microbial compounds, the glucan elicitor from P. megasperma, xanthan, an extracellular polysaccharide from Xanthomonas campestris, and endopolygalacturonase from Aspergillus niger. However, whereas the glucan elicitor induced the accumulation of large amounts of the phytoalexin, glyceollin, in soybean cells, endopolygalacturonase induced only low, albeit significant, amounts; xanthan did not enhance glyceollin accumulation under the conditions of this study. This result might imply that enzymes other than phenylalanine ammonia-lyase or chalcone synthase exert an important regulatory function in phytoalexin synthesis in soybean cells.  相似文献   
839.
Summary The differentiation of the secretory cavities of Ginkgo stem and the structural organization of the epithelial cells were followed by light and electron microscopy. The mode of formation of the cavities is schizo-lysigeneous. Functional complexes of leucoplasts and associated endoplasmic reticulum (ER) membranes are assumed to be the site of synthesis and translocation of the lipophilic secretory product. Most of the endoplasmic reticulum membranes are paired. The content of the cavities was directly collected and analysed by low- and high-resolution mass spectrometry. The cavities contain anacardic acids and cardanols, which are long-chain phenol lipids not characteristic of Ginkgo. The relationship between the plastid/ER complexes and the production of these secondary metabolites is discussed.  相似文献   
840.
Detailed atomic models of a eubacterial 5 S rRNA (spinach chloroplast 5 S rRNA) and of a eukaryotic 5 S rRNA (somatic and oocyte 5 S rRNA from Xenopus laevis) were built using computer graphic. Both models integrate stereochemical constraints and experimental data on the accessibility of bases and phosphates towards several structure-specific probes. The base sequence was first inserted on to three-dimensional structural fragments picked up in a specially devised databank. The fragments were modified and assembled interactively on an Evans & Sutherland PS330. Modeling was finalized by stereochemical and energy refinement. In spite of some uncertainty in the relative spatial orientation of the substructures, the broad features of the models can be generalized and several conclusions can be reached: (1) both models adopt a distorted Y-shape structure, with helices B and D not far from colinearity; (2) no tertiary interactions exist between loop c and region d or loop e; (3) the internal loops, in particular region d, contain several non-canonical base-pairs of A.A, U.U and A.G types; (4) invariant residues appear to be more important for protein or RNA binding than for maintaining the tertiary structure. The models are corroborated by footprinting experiments with ribosomal proteins and by the analysis of various mutants. Such models help to clarify the structure-function relationship of 5 S rRNA and are useful for designing site-directed mutagenesis experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号