首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13631篇
  免费   908篇
  2024年   12篇
  2023年   95篇
  2022年   103篇
  2021年   208篇
  2020年   171篇
  2019年   217篇
  2018年   428篇
  2017年   417篇
  2016年   578篇
  2015年   792篇
  2014年   773篇
  2013年   1084篇
  2012年   1349篇
  2011年   1223篇
  2010年   696篇
  2009年   554篇
  2008年   818篇
  2007年   778篇
  2006年   742篇
  2005年   634篇
  2004年   621篇
  2003年   556篇
  2002年   503篇
  2001年   131篇
  2000年   111篇
  1999年   98篇
  1998年   80篇
  1997年   54篇
  1996年   56篇
  1995年   56篇
  1994年   28篇
  1993年   42篇
  1992年   48篇
  1991年   41篇
  1990年   42篇
  1989年   36篇
  1988年   34篇
  1987年   21篇
  1986年   33篇
  1985年   33篇
  1984年   43篇
  1983年   20篇
  1982年   21篇
  1981年   21篇
  1980年   17篇
  1979年   18篇
  1978年   13篇
  1977年   15篇
  1976年   14篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
211.
212.
The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS). Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.  相似文献   
213.

Context

Early identification of Bipolar Disorder (BD) remains poor despite the high levels of disability associated with the disorder.

Objective

We developed and evaluated a new DSM orientated scale for the identification of young people at risk for BD based on the Child Behavior Checklist (CBCL) and compared its performance against the CBCL-Pediatric Bipolar Disorder (CBCL-PBD) and the CBCL-Externalizing Scale, the two most widely used scales.

Methods

The new scale, CBCL-Mania Scale (CBCL-MS), comprises 19 CBCL items that directly correspond to operational criteria for mania. We tested the reliability, longitudinal stability and diagnostic accuracy of the CBCL-MS on data from the TRacking Adolescents'' Individual Lives Survey (TRAILS), a prospective epidemiological cohort study of 2230 Dutch youths assessed with the CBCL at ages 11, 13 and 16. At age 19 lifetime psychiatric diagnoses were ascertained with the Composite International Diagnostic Interview. We compared the predictive ability of the CBCL-MS against the CBCL-Externalising Scale and the CBCL-PBD in the TRAILS sample.

Results

The CBCL-MS had high internal consistency and satisfactory accuracy (area under the curve = 0.64) in this general population sample. Principal Component Analyses, followed by parallel analyses and confirmatory factor analyses, identified four factors corresponding to distractibility/disinhibition, psychosis, increased libido and disrupted sleep. This factor structure remained stable across all assessment ages. Logistic regression analyses showed that the CBCL-MS had significantly higher predictive ability than both the other scales.

Conclusions

Our data demonstrate that the CBCL-MS is a promising screening instrument for BD. The factor structure of the CBCL-MS showed remarkable temporal stability between late childhood and early adulthood suggesting that it maps on to meaningful developmental dimensions of liability to BD.  相似文献   
214.
215.
Pancreatic cancer (PC) remains one of the most lethal human malignancies with poor prognosis. Despite all advances in preclinical research, there have not been significant translation of novel therapies into the clinics. The development of genetically engineered mouse (GEM) models that produce spontaneous pancreatic adenocarcinoma (PDAC) have increased our understanding of the pathogenesis of the disease. Although these PDAC mouse models are ideal for studying potential therapies and specific genetic mutations, there is a need for developing syngeneic cell lines from these models. In this study, we describe the successful establishment and characterization of three cell lines derived from two (PDAC) mouse models. The cell line UN-KC-6141 was derived from a pancreatic tumor of a KrasG12D;Pdx1-Cre (KC) mouse at 50 weeks of age, whereas UN-KPC-960 and UN-KPC-961 cell lines were derived from pancreatic tumors of KrasG12D;Trp53R172H;Pdx1-Cre (KPC) mice at 17 weeks of age. The cancer mutations of these parent mice carried over to the daughter cell lines (i.e. KrasG12D mutation was observed in all three cell lines while Trp53 mutation was observed only in KPC cell lines). The cell lines showed typical cobblestone epithelial morphology in culture, and unlike the previously established mouse PDAC cell line Panc02, expressed the ductal marker CK19. Furthermore, these cell lines expressed the epithelial-mesenchymal markers E-cadherin and N-cadherin, and also, Muc1 and Muc4 mucins. In addition, these cell lines were resistant to the chemotherapeutic drug Gemcitabine. Their implantation in vivo produced subcutaneous as well as tumors in the pancreas (orthotopic). The genetic mutations in these cell lines mimic the genetic compendium of human PDAC, which make them valuable models with a high potential of translational relevance for examining diagnostic markers and therapeutic drugs.  相似文献   
216.
The self-associating autotransporters (SAATs) are multifunctional secreted proteins of Escherichia coli, comprising the AIDA-I, TibA and Ag43 proteins. One of their characteristics is that they can be glycosylated. Glycosylation of AIDA-I and Ag43 have been investigated, but not that of TibA. It is still not clear whether glycosylation of the SAATs affect their structure or their functionality. Therefore, we have looked at the effects of glycosylation on the TibA adhesin/invasin. TibA is glycosylated by TibC, a specific glycosyltransferase, and the two genes are encoded in an operon. In this study, we have found that the glycosylation of TibA is not limited to the extracellular functional domain, as previously observed with AIDA-I and Ag43. We have determined that unglycosylated TibA is not able to promote the adhesion of bacteria on cultured epithelial cell, even though it is still able to promote invasion, biofilm formation and autoaggregation of bacteria. We have purified the glycosylated and unglycosylated forms of TibA, and determined that TibA is less stable when not glycosylated. We finally observed that glycosylation affects the oligomerisation of TibA and that unglycosylated TibA is locked in a conformation that is not suited for adhesion. Our results suggest that the effect of glycosylation on the functionality of TibA is indirect.  相似文献   
217.
Over millions of years, living organisms have explored and optimized the digestion of a wide variety of substrates. Engineers who develop anaerobic digestion processes for waste treatment and energy production can learn much from this accumulated ‘experience’. The aim of this work is a survey based on the comparison of 190 digestive tracts (vertebrate and insect) considered as ‘reactors’ and their anaerobic processes. Within a digestive tract, each organ is modeled as a type of reactor (continuous stirred-tank, such reactors in series, plug-flow or batch) associated with chemical aspects such as pH or enzymes. Based on this analysis, each complete digestion process has been rebuilt and classified in accordance with basic structures which take into account the relative size of the different reactors. The results show that all animal digestive structures can be grouped within four basic types. Size and/or position in the structure of the different reactors (pre/post treatment and anaerobic microbial digestion) are closely correlated to the degradability of the feed (substrate). Major common features are: (i) grinding, (ii) an extreme pH compartment, and (iii) correlation between the size of the microbial compartment and the degradability of the feed. Thus, shared answers found by animals during their evolution can be a source of inspiration for engineers in designing optimal anaerobic processes.  相似文献   
218.
219.
An organic extract was prepared from the culture medium and mycelia of the marine fungus Aspergillus stromatoides Raper & Fennell . The extract was fractionated via column chromatography, and the resulting fractions were tested for their abilities to quench the fluorescence of the calmodulin (CaM) biosensor hCaM M124C‐mBBr. From the active fraction, emodin ( 1 ) and ω‐hydroxyemodin ( 2 ) were isolated as CaM inhibitors. Anthraquinones 1 and 2 quenched the fluorescence of the hCaM M124C‐mBBr biosensor in a concentration‐dependent manner with Kd values of 0.33 and 0.76 μM , respectively. The results were compared with those of chlorpromazine (CPZ), a classical inhibitor of CaM, with a Kd value of 1.25 μM . Docking analysis revealed that 1 and 2 bind to the same pocket of CPZ. The CaM inhibitor properties of 1 and 2 were correlated with some of their reported biological properties. Citrinin ( 3 ), methyl 8‐hydroxy‐6‐methyl‐9‐oxo‐9H‐xanthene‐1‐carboxylate ( 4 ), and coniochaetone A ( 5 ) were also isolated in the present study. The X‐ray structure of 5 is reported for the first time.  相似文献   
220.
Aiming at learning the functional bacterial community in the high humus content, saline-alkaline soils of chinampas, the cellulolytic bacteria were quantified and 100 bacterial isolates were isolated and characterized in the present study. Analysis of 16S-23S IGS (intergenic spacer) RFLP (restriction fragment length polymorphism) grouped the isolates into 48 IGS types and phylogenetic analysis of 16S rRNA genes identified them into 42 phylospecies within 29 genera and higher taxa belonging to the phyla Actinobacteria, Firmicutes and Proteobacteria, dominated by the genera Arthrobacter, Streptomyces, Bacillus, Pseudomonas, Pseudoxanthomonas and Stenotrophomonas. Among these bacteria, 63 isolates represent 26 novel putative species or higher taxa, while 37 were members of 17 defined species according to the phylogenetic relationships of 16S rRNA gene. Except for the novel species, the cellulolytic activity was not reported previously in 9 of the 17 species. They degraded cellulose in medium at pH?4.5–10.0 or supplied with NaCl up to 9 %. In addition, 84.8 and 71.7 % of them degraded xylan and Avicel, respectively. These results greatly improved the knowledge about the diversity of cellulolytic bacteria and demonstrated that the chinampa soils contain diverse and novel cellulolytic bacteria functioning at a wide range of pH and salinity levels, which might be a valuable biotechnological resource for biotransformation of cellulose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号