首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   34篇
  1007篇
  2023年   1篇
  2022年   9篇
  2021年   16篇
  2020年   5篇
  2019年   7篇
  2018年   15篇
  2017年   8篇
  2016年   23篇
  2015年   46篇
  2014年   49篇
  2013年   86篇
  2012年   99篇
  2011年   87篇
  2010年   42篇
  2009年   39篇
  2008年   71篇
  2007年   74篇
  2006年   60篇
  2005年   55篇
  2004年   51篇
  2003年   46篇
  2002年   41篇
  2001年   12篇
  2000年   2篇
  1999年   8篇
  1998年   12篇
  1997年   9篇
  1996年   4篇
  1995年   7篇
  1994年   1篇
  1993年   7篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1981年   1篇
排序方式: 共有1007条查询结果,搜索用时 15 毫秒
61.
The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS). Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.  相似文献   
62.
Nakai K  Vert JP 《Genome biology》2002,3(4):reports4010.1-reports40103
A report on the 12th International Conference on Genome Informatics, Tokyo, Japan, 17-19 December 2001.  相似文献   
63.
A critical step of neuronal terminal differentiation is the permanent withdrawal from the cell cycle that requires the silencing of genes that drive mitosis. Here, we describe that the alpha isoform of the heterochromatin protein 1 (HP1) protein family exerts such silencing on several E2F-targeted genes. Among the different isoforms, HP1alpha levels progressively increase throughout differentiation and take over HP1gamma binding on E2F sites in mature neurons. When overexpressed, only HP1alpha is able to ensure a timed repression of E2F genes. Specific inhibition of HP1alpha expression drives neuronal progenitors either towards death or cell cycle progression, yet preventing the expression of the neuronal marker microtubule-associated protein 2. Furthermore, we provide evidence that this mechanism occurs in cerebellar granule neurons in vivo, during the postnatal development of the cerebellum. Finally, our results suggest that E2F-targeted genes are packaged into higher-order chromatin structures in mature neurons relative to neuroblasts, likely reflecting a transition from a 'repressed' versus 'silenced' status of these genes. Together, these data present new epigenetic regulations orchestrated by HP1 isoforms, critical for permanent cell cycle exit during neuronal differentiation.  相似文献   
64.
The achievement of a better life for cystic fibrosis (CF) patients is mainly caused by a better management and infection control over the last three decades. Herein, we want to summarize the cornerstones for an effective management of CF patients and to give an overview of the knowledge about the fungal epidemiology in this clinical context in Europe. Data from a retrospective analysis encompassing 66,616 samples from 3235 CF patients followed-up in 9 CF centers from different European countries are shown.  相似文献   
65.
This new century addresses several environmental challenges among which distribution of drinking water, global warming and availability of novel renewable energy sources to substitute for fossil fuels are of utmost importance. The last two concerns are closely related because the major part of carbon dioxide (CO(2)), considered as the main cause of the greenhouse effect, is widely produced from fossil fuel combustion. Renewable energy sources fully balanced in CO(2) are therefore of special interest, especially the issue of biological production from organic wastes. Among the possibilities of bioenergy production from wastes, two approaches are particularly interesting: The first one is relatively old and related to the production of biomethane by anaerobic digestion while the second one, more recent and innovative, relies on biohydrogen production by microbial ecosystems.  相似文献   
66.
IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.  相似文献   
67.
Corticosteroids are hormonal substances widely used in human and veterinary medicine for their anti-inflammatory properties. Among the numerous existing artificial corticosteroids, dexamethasone remains the most commonly used, mainly throughout esterified forms such as acetate or phosphate. An experimental study was designed to assess its drug residue levels in urine and feces, as well as its fixation in bovine hair following a single administration of 0.15 mg/kg b.w. dexamethasone acetate and 0.12 mg/kg b.w. dexamethasone sodium phosphate. Different analytical methods based on GC-MS or LC-MS/MS were used for measuring dexamethasone and its esterified forms, which were implemented in 3 different European laboratories in the field that collaborated for this study. The obtained results confirmed the high and rapid urinary excretion rate of dexamethasone, with a maximal concentration (267 μg/L) measured one day after administration and 98% elimination within 3 days. The concentrations obtained with the GC-NCI-MS procedure (using chemical oxidation as derivatization) were found significantly higher than the ones obtained with LC-ESI-MS/MS, indicating a possible contribution of dexamethasone phase I and/or II metabolites to the monitored signal. Fecal elimination was also found rapid (95% elimination within 3 days) with a maximum concentration level (28.5 μg/kg) observed one day after administration. Detectable levels of dexamethasone in hair appeared on day 2 (11.5 μg/kg), reached a maximum around one week, and could be identified until 22 days upon treatment, establishing the suitability of hair as a biological matrix for medium to long-term residue controls of dexamethasone.  相似文献   
68.
69.
Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1β secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1β production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.  相似文献   
70.
Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR)3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities and tissue distribution. Activating mutations of the FGFR3 gene lead to craniosynostosis and multiple types of skeletal dysplasia with varying degrees of severity: thanatophoric dysplasia (TD), achondroplasia and hypochondroplasia. Despite progress in the characterization of FGFR3-mediated regulation of cartilage development, many aspects remain unclear. The aim and the novelty of our study was to examine whole gene expression differences occurring in primary human chondrocytes isolated from normal cartilage or pathological cartilage from TD-affected fetuses, using Affymetrix technology. The phenotype of the primary cells was confirmed by the high expression of chondrocytic markers. Altered expression of genes associated with many cellular processes was observed, including cell growth and proliferation, cell cycle, cell adhesion, cell motility, metabolic pathways, signal transduction, cell cycle process and cell signaling. Most of the cell cycle process genes were down-regulated and consisted of genes involved in cell cycle progression, DNA biosynthesis, spindle dynamics and cytokinesis. About eight percent of all modulated genes were found to impact extracellular matrix (ECM) structure and turnover, especially glycosaminoglycan (GAG) and proteoglycan biosynthesis and sulfation. Altogether, the gene expression analyses provide new insight into the consequences of FGFR3 mutations in cell cycle regulation, onset of pre-hypertrophic differentiation and concomitant metabolism changes. Moreover, impaired motility and ECM properties may also provide clues about growth plate disorganization. These results also suggest that many signaling pathways may be directly or indirectly altered by FGFR3 and confirm the crucial role of FGFR3 in the control of growth plate development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号