首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2076篇
  免费   92篇
  2168篇
  2023年   4篇
  2022年   6篇
  2021年   17篇
  2020年   12篇
  2019年   6篇
  2018年   20篇
  2017年   11篇
  2016年   33篇
  2015年   51篇
  2014年   58篇
  2013年   91篇
  2012年   144篇
  2011年   97篇
  2010年   83篇
  2009年   85篇
  2008年   117篇
  2007年   126篇
  2006年   103篇
  2005年   132篇
  2004年   121篇
  2003年   146篇
  2002年   115篇
  2001年   48篇
  2000年   48篇
  1999年   31篇
  1998年   56篇
  1997年   24篇
  1996年   36篇
  1995年   27篇
  1994年   28篇
  1993年   24篇
  1992年   22篇
  1991年   21篇
  1990年   15篇
  1989年   16篇
  1988年   14篇
  1987年   4篇
  1986年   12篇
  1985年   19篇
  1984年   17篇
  1983年   16篇
  1982年   16篇
  1981年   19篇
  1980年   14篇
  1979年   10篇
  1978年   11篇
  1977年   7篇
  1976年   10篇
  1975年   7篇
  1974年   6篇
排序方式: 共有2168条查询结果,搜索用时 15 毫秒
41.
42.
The presence of a hydroxyl group at the end of poly(3-hydroxyoctanoate) oligomers, noted PHO oligomers, is required to prepare diblock copolymers with improved properties by ring-opening polymerization of cyclic monomer as epsilon-caprolactone. Several chemical methods such as basic hydrolysis, acid-catalyzed reaction with APTS, and methanolysis were used to prepare well-defined low molar masses PHO oligomers. The methanolysis reaction was allowed to proceed for 10-60 min to produce PHO oligomers with Mn values ranging from 20,000 to 800 g mol-1 with low polydispersity index. Detailed analysis of the MALDI-TOF mass spectra of the obtained oligomers has revealed the presence of linear structures bearing methyl ester on one side and hydroxyl end group on the other side. The same procedure was applied to poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate), PHOU, a poly(3-hydroxyalkanoate) containing unsaturated units in its side chains. These oligomers were further used to initiate the polymerization of epsilon-caprolactone by varying the PHO (or PHOU) and PCL lengths. By copolymerization with epsilon-caprolactone, the properties of PHO or PHOU have been improved. The crystallinity of the obtained copolymers was modified by controlling the length of the two different blocks. The unsaturations in the side chains of the PHOU block were oxidized in acid carboxylic functions to obtain a novel artificial biopolyester. Moreover, degradation was followed to study the influence of carboxylic groups on the hydrolysis of the copolymers.  相似文献   
43.
Phosphorylase kinase (PhK) is a large hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase (GP). It consists in four copies each of a catalytic subunit (gamma) and three regulatory subunits (alpha beta delta). Delta corresponds to endogenous calmodulin, whereas little is known on the molecular architecture of the large alpha and beta subunits, which probably arose from gene duplication. Here, using sensitive methods of sequence analysis, we show that the C-terminal domain (named domain D) of these alpha and beta subunits can be significantly related to calcineurin B-like (CBL) proteins. CBL are members of the EF-hand family that are involved in the regulation of plant-specific kinases of the CIPK/PKS family, and relieve autoinhibition of their target kinases by binding to their regulatory region. The relationship highlighted here suggests that PhK alpha and/or beta domain D may be involved in a similar regulation mechanism, a hypothesis which is supported by the experimental observation of a direct interaction between domain D of PhKalpha and the regulatory region of the Gamma subunit. This finding, together the identification of significant similarities of domain D with the preceding domain C, may help to understand the molecular mechanism by which PhK alpha and/or beta domain D might regulate PhK activity.  相似文献   
44.
45.
We report the generation of Solanum tuberosum transformants expressing Cicer arietinum betaIII-Gal. betaIII-Gal is a beta-galactosidase able to degrade cell wall pectins during cell wall loosening that occurs prior to cell elongation. cDNA corresponding to the gene encoding this protein was identified among several chickpea beta-galactosidase cDNAs, and named CanBGal-3. CanBGal-3 cDNA was expressed in potato under the control of the granule-bound starch synthase promoter. Three betaIII-Gal transformants with varying levels of expression were chosen for further analysis. The transgenic plants displayed no significant altered phenotype compared to the wild type. However, beta-galactanase and beta-galactosidase activities were increased in the transgenic tuber cell walls and this affected the potato tuber pectins. A reduction in the galactosyl content of up to 50% compared to the wild type was observed in the most extreme transformant, indicating a reduction of 1,4-beta-galactan side-chains, as revealed by analysis with LM5 specific antibodies. Our results confirm the notion that the pectin-degrading activity of chickpea betaIII-Gal reported in vitro also occurs in vivo and in other plants, and confirm the involvement of betaIII-Gal in the cell wall autolysis process. An increase in the homogalacturonan content of transgenic tuber cell walls was also observed by Fourier transform infrared spectroscopy (FTIR) analysis.  相似文献   
46.
The present work aimed to study in rats whether substitution of a low level of fish oil (FO; 2.2% of calories) into a low-fat diet (6.6% of calories from fat as peanut-rape oil or control diet) 1) has a tissue-specific effect on insulin signaling pathway and 2) prevents dexamethasone-induced alteration of insulin signaling in liver, muscle, and adipose tissue. Sixteen rats were used for study of insulin signaling, and sixteen rats received an oral glucose load (3 g/kg). Eight rats/group consumed control diet or diet containing FO over 5 wk. Four rats from each group received a daily intraperitoneal injection of saline or dexamethasone (1 mg.kg(-1).day(-1)) for the last 5 days of feeding. In liver, FO decreased phosphatidylinositol 3'-kinase (PI 3'-kinase) activity by 54% compared with control diet. A similar result was obtained in muscle. In both liver and muscle, FO clearly amplified the effect of dexamethasone. FO did not alter early steps of insulin signaling, and in muscle GLUT4 protein content remained unaltered. In adipose tissue, FO increased PI 3'-kinase activity by 74%, whereas dexamethasone decreased it by 65%; inhibition of PI 3'-kinase activity by dexamethasone was similar in rats fed FO or control diet, and GLUT4 protein content was increased by 61% by FO. Glycemic and insulinemic responses to oral glucose were not modified by FO. In conclusion, FO increased PI 3'-kinase activity in adipose tissue while inhibiting it in liver and muscle. The maintenance of whole body glucose homeostasis suggests an important role of adipose tissue for control of glucose homeostasis.  相似文献   
47.
48.

The compliance of the proximal aortic wall is a major determinant of cardiac afterload. Aortic compliance is often estimated based on cross-sectional area changes over the pulse pressure, under the assumption of a negligible longitudinal stretch during the pulse. However, the proximal aorta is subjected to significant axial stretch during cardiac contraction. In the present study, we sought to evaluate the importance of axial stretch on compliance estimation by undertaking both an in silico and an in vivo approach. In the computational analysis, we developed a 3-D finite element model of the proximal aorta and investigated the discrepancy between the actual wall compliance to the value estimated after neglecting the longitudinal stretch of the aorta. A parameter sensitivity analysis was further conducted to show how increased material stiffness and increased aortic root motion might amplify the estimation errors (discrepancies between actual and estimated distensibility ranging from − 20 to − 62%). Axial and circumferential aortic deformation during ventricular contraction was also evaluated in vivo based on MR images of the aorta of 3 healthy young volunteers. The in vivo results were in good qualitative agreement with the computational analysis (underestimation errors ranging from − 26 to − 44%, with increased errors reflecting higher aortic root displacement). Both the in silico and in vivo findings suggest that neglecting the longitudinal strain during contraction might lead to severe underestimation of local aortic compliance, particularly in the case of women who tend to have higher aortic root motion or in subjects with stiff aortas.

  相似文献   
49.
The synthesis and pharmacological evaluation of new 3-(imidazol-4(5)-ylmethylene)-2,3-dihydrobenzo[b]furan-2-ones 8-10 and 3-(3,5-dimethylpyrrol-2-ylmethylene)-2,3-dihydrobenzo[b]furan-2-one 11, analogues of SU-5416, as potential inhibitors of angiogenesis, are reported. Compounds 8 and 11 were prepared by a Knoevenagel reaction starting from 2-hydroxyphenylacetic acid 2 and 4-formylimidazole 5 or 2-formyl-3,5-dimethylpyrrole 7, followed by acid-catalysed cyclodehydration. For compounds 9 and 10, an alternative method was used; it consisted in carrying out the Knoevenagel reaction with the 2,3-dihydrobenzo[b]furan-2-ones 3 and 4. The antiangiogenic activity of these compounds was evaluated in the three-dimensional in vitro rat aortic rings test at 1 μM. At this concentration, compound 11 induced a decrease of angiogenesis comparable to that observed with SU-5416; the vascular density index at 1 μM of 11 and SU-5416 were 30±10 and 22±4% of control, respectively.  相似文献   
50.
The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD+ to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号