首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94554篇
  免费   328篇
  国内免费   880篇
  95762篇
  2021年   14篇
  2018年   11849篇
  2017年   10679篇
  2016年   7463篇
  2015年   621篇
  2014年   324篇
  2013年   348篇
  2012年   4311篇
  2011年   12878篇
  2010年   12053篇
  2009年   8280篇
  2008年   9858篇
  2007年   11442篇
  2006年   334篇
  2005年   612篇
  2004年   1056篇
  2003年   1123篇
  2002年   865篇
  2001年   274篇
  2000年   177篇
  1999年   42篇
  1998年   49篇
  1997年   36篇
  1996年   34篇
  1995年   19篇
  1994年   27篇
  1993年   49篇
  1992年   34篇
  1991年   49篇
  1990年   20篇
  1989年   16篇
  1988年   25篇
  1987年   15篇
  1986年   10篇
  1985年   14篇
  1984年   19篇
  1983年   29篇
  1982年   14篇
  1981年   15篇
  1980年   12篇
  1979年   8篇
  1978年   10篇
  1976年   9篇
  1975年   13篇
  1972年   250篇
  1971年   275篇
  1965年   14篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.

Background

Cellular responses to extracellular perturbations require signaling pathways to capture and transmit the signals. However, the underlying molecular mechanisms of signal transduction are not yet fully understood, thus detailed and comprehensive models may not be available for all the signaling pathways. In particular, insufficient knowledge of parameters, which is a long-standing hindrance for quantitative kinetic modeling necessitates the use of parameter-free methods for modeling and simulation to capture dynamic properties of signaling pathways.

Results

We present a computational model that is able to simulate the graded responses to degradations, the sigmoidal biological relationships between signaling molecules and the effects of scheduled perturbations to the cells. The simulation results are validated using experimental data of protein phosphorylation, demonstrating that the proposed model is capable of capturing the main trend of protein activities during the process of signal transduction. Compared with existing simulators, our model has better performance on predicting the state transitions of signaling networks.

Conclusion

The proposed simulation tool provides a valuable resource for modeling cellular signaling pathways using a knowledge-based method.
  相似文献   
992.

Background

Developing novel uses of approved drugs, called drug repositioning, can reduce costs and times in traditional drug development. Network-based approaches have presented promising results in this field. However, even though various types of interactions such as activation or inhibition exist in drug-target interactions and molecular pathways, most of previous network-based studies disregarded this information.

Methods

We developed a novel computational method, Prediction of Drugs having Opposite effects on Disease genes (PDOD), for identifying drugs having opposite effects on altered states of disease genes. PDOD utilized drug-drug target interactions with ‘effect type’, an integrated directed molecular network with ‘effect type’ and ‘effect direction’, and disease genes with regulated states in disease patients. With this information, we proposed a scoring function to discover drugs likely to restore altered states of disease genes using the path from a drug to a disease through the drug-drug target interactions, shortest paths from drug targets to disease genes in molecular pathways, and disease gene-disease associations.

Results

We collected drug-drug target interactions, molecular pathways, and disease genes with their regulated states in the diseases. PDOD is applied to 898 drugs with known drug-drug target interactions and nine diseases. We compared performance of PDOD for predicting known therapeutic drug-disease associations with the previous methods. PDOD outperformed other previous approaches which do not exploit directional information in molecular network. In addition, we provide a simple web service that researchers can submit genes of interest with their altered states and will obtain drugs seeming to have opposite effects on altered states of input genes at http://gto.kaist.ac.kr/pdod/index.php/main.

Conclusions

Our results showed that ‘effect type’ and ‘effect direction’ information in the network based approaches can be utilized to identify drugs having opposite effects on diseases. Our study can offer a novel insight into the field of network-based drug repositioning.
  相似文献   
993.
This study investigated the seasonal change in xylem growth of Japanese red pine (Pinus densiflora). Wood cores were sampled at 2-week intervals from April to November in 2012 using the microcoring method. Daily increment rates of tracheid number and tree-ring width were compared with seasonal changes in daily mean temperature and photoperiod. Xylem growth started in early to late May and stopped in late October to early November. The maximum daily increment rates of tracheid number and tree-ring width were in early July. The 95 % confidence intervals of the timing of the maximum daily increment rates included the summer solstice (23 June) with the longest photoperiod, but not the warmest day (30 July). The maximum daily increment rate of xylem growth is thought to be controlled by the photoperiod rather than by temperature. The daily mean temperature exceeded 20 °C after the summer solstice, indicating that temperature is not a limiting factor for xylem growth. This study suggests that the timing of maximum daily increment rates of xylem growth of P. densiflora is controlled by the photoperiod.  相似文献   
994.
Omics-based technology platforms have made new kinds of cancer profiling tests feasible. There are several valuable examples in clinical practice, and many more under development. A concerted, transparent process of discovery with lock-down of candidate assays and classifiers and clear specification of intended clinical use is essential. The Institute of Medicine has now proposed a three-stage scheme of confirming and validating analytical findings, validating performance on clinical specimens, and demonstrating explicit clinical utility for an approvable test (Micheel et al., Evolution of translational omics: lessons learned and path forward, 2012).  相似文献   
995.
996.
997.
Molecular dynamics (MD) simulations using all-atom and explicit solvent models provide valuable information on the detailed behavior of protein–partner substrate binding at the atomic level. As the power of computational resources increase, MD simulations are being used more widely and easily. However, it is still difficult to investigate the thermodynamic properties of protein–partner substrate binding and protein folding with conventional MD simulations. Enhanced sampling methods have been developed to sample conformations that reflect equilibrium conditions in a more efficient manner than conventional MD simulations, thereby allowing the construction of accurate free-energy landscapes. In this review, we discuss these enhanced sampling methods using a series of case-by-case examples. In particular, we review enhanced sampling methods conforming to trivial trajectory parallelization, virtual-system coupled multicanonical MD, and adaptive lambda square dynamics. These methods have been recently developed based on the existing method of multicanonical MD simulation. Their applications are reviewed with an emphasis on describing their practical implementation. In our concluding remarks we explore extensions of the enhanced sampling methods that may allow for even more efficient sampling.  相似文献   
998.
Invading pathogens elicit potent immune responses in cells through interactions between structurally conserved molecules derived from the pathogens and specialized innate immune receptors such as the Toll-like receptors (TLRs). Nucleic acid is one of the principal TLR ligands. Nucleic acid-sensing TLRs recognize an array of nucleic acids, including double-stranded RNA, single-stranded RNA, and DNAs with specific sequence motifs. Although ligand-induced dimerization is commonly observed followed by TLR activation, both the specific recognition mechanisms and the ligand–receptor interactions vary among different TLRs. In this review, we highlight our current understanding of how these receptors recognize their cognate ligands based on the recent advances in structural biology.  相似文献   
999.
1000.
Neurotransmitters are the compounds which allow the transmission of signals from one neuron to the next across synapses. They are the brain chemicals that communicate information throughout brain and body. Fullerenes are a family of carbonallotropes, molecules composed entirely of carbon, that take the forms of spheres, ellipsoids, and cylinders. Various empty carbon fullerenes (Cn) with different carbon atoms have been obtained and investigated. Topological indices have been successfully used to construct effective and useful mathematical methods to establish clear relationships between structural data and the physical properties of these materials. In this study, the number of carbon atoms in the fullerenes was used as an index to establish a relationship between the structures of neurotransmitters (NTs) acetylcholine (AC) 1, dopamine (DP) 2, serotonin (SE) 3, and epinephrine (EP) 4 as the well-known redox systems and fullerenes Cn (n = 60, 70, 76, 82, and 86) which create [NT].Cn; A-1 to A-5 up to D-1 to D-5. The relationship between the number of carbon atoms and the free energy of electron transfer (ΔGet(n); n = 1–4) is assessed using the Rehm-Weller equation for A-1 to A-5 up to D-1 to D-5 supramolecular [NT].Cn complexes. The calculations are presented for the four reduction potentials (Red.E1 to Red.E4) of fullerenes Cn. The results were used to calculate the four free energy values of electron transfer (ΔGet(1) to ΔGet(4)) of the supramolecular complexes A-1 to A-8 up to D-1 to D-8 for fullerenes C60 to C120. The first to fourth free activation energy values of electron transfer and the maximum wavelength of the electron transfers, ΔG#et(n) and λet (n = 1–4), respectively, were also calculated in this study for A-1 to A-8 up to D-1 to D-8 in accordance with the Marcus theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号