首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1538篇
  免费   79篇
  国内免费   1篇
  1618篇
  2023年   5篇
  2022年   13篇
  2021年   17篇
  2020年   7篇
  2019年   3篇
  2018年   15篇
  2017年   11篇
  2016年   20篇
  2015年   50篇
  2014年   76篇
  2013年   83篇
  2012年   105篇
  2011年   113篇
  2010年   69篇
  2009年   78篇
  2008年   103篇
  2007年   98篇
  2006年   96篇
  2005年   95篇
  2004年   94篇
  2003年   80篇
  2002年   90篇
  2001年   24篇
  2000年   15篇
  1999年   15篇
  1998年   29篇
  1997年   14篇
  1996年   12篇
  1995年   15篇
  1994年   13篇
  1993年   10篇
  1992年   12篇
  1991年   11篇
  1990年   13篇
  1989年   12篇
  1988年   10篇
  1987年   13篇
  1986年   13篇
  1985年   8篇
  1984年   8篇
  1983年   3篇
  1982年   9篇
  1981年   8篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1976年   3篇
  1975年   1篇
  1974年   4篇
  1971年   1篇
排序方式: 共有1618条查询结果,搜索用时 31 毫秒
941.
Five distinct electrical penetration graph waveforms characterising the feeding behaviour of the leafhopper Cicadulina mbila Naudé (Homoptera: Cicadellidae) on maize (Zea mays L.) were obtained using a DC based system. The waveforms were distinguished by spectral features and by statistical analysis of their median voltages, durations and time to first waveform recording. By changing the polarity of the system voltage and the level of the input resistor it was shown that the waveforms are mainly determined by the electromotive force (emf) component. Based on the correlation between waveforms and the fine structure of the stylet pathways observed by transmission electron microscopy, insect's activities have been associated with five waveforms: stylet pathway formation (waveform 1), active ingestion (waveform 2), putative stylet work (waveform 3), salivation (waveform 4) and passive ingestion (waveform 5). Like waveform E1 and E2 of aphids, waveforms 4 and 5 of C. mbila correspond to feeding activities in sieve tubes. However, unlike aphids which probe briefly in non-vascular cells, waveform 2 corresponds to active ingestion in cells, where the cell content is partially ingested and hence the organelles' integrity severely affected. These observations suggest that this specific feeding feature, typical of leafhoppers, determines their ability to acquire geminivirus virions located in the plant cell nucleus.  相似文献   
942.
943.
Summary Strains carrying a dnaA temperature sensitive (t.s.) mutation and a Mu-1 prophage inserted within different genes near the origin of replication have been constructed. For each strain, integratively suppressed Hfrs, named G and D, in which the ori region was replicated clockwise and counterclockwise respectively, were isolated. The strand preferences of Mu-1 specific Okazaki fragments were subsequently determined for each t.s. strain and its Hfr derivatives. Their comparison led us to establish the direction of replication of the Mu-1 marker from ori. The site ori was thus confined to the bglB-C-rbsK-P interval.  相似文献   
944.
945.
Many previous studies have pointed out that, when resources are limited, the potential for competition should be high among sympatric species that display overlaps in habitat and nutritional niches. However, reliable evidence of competition between red deer (Cervus elaphus) and roe deer (Capreolus capreolus) has not been yet reported for life history traits directly measuring performance such as body mass, reproduction, or survival. From long-term monitoring of deer populations in the reserve of La Petite Pierre (France), we measured the sex-specific responses of roe deer fawn body mass to changes in red deer density after accounting for possible confounding effects of date of shooting, climatic conditions, and roe deer density. As expected under the hypothesis of competition, red deer density in a given year had a marked negative influence on body mass of roe deer fawns born the same year and the following year. Fawn mass of roe deer males and females responded in similar ways to changes in red deer density. Our study provides the first evidence of a negative response of roe deer performance to high red deer density.  相似文献   
946.
Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.Medicago truncatula has become a model for studying the biology of leguminous plants such as soybean (Glycine max), alfalfa (Medicago sativa), and clover (Trifolium spp.; Singh et al., 2007). Most members of this vast family have the ability to fix atmospheric nitrogen by virtue of an endosymbiotic association with rhizobial bacteria, through which legumes undergo nodulation, the process of forming root nodules (Jones et al., 2007). Legumes are central to modern agriculture and civilization because of their ability to grow in nitrogen-depleted soils and replenish nitrogen through crop rotation. Consequently, there is great interest in understanding the molecular events that allow legumes to recognize their symbionts, develop root nodules, and fix nitrogen. Nod factors are lipochitooligosaccharidic signals secreted by the rhizobia and are required, in most legumes, for intracellular infection and nodule development. In recent decades, an elegant combination of genetics, biochemistry, and cell biology has shown that Nod factors activate intricate signaling events within cells of legume roots, including protein phosphorylation cascades and intracellular ion fluxes (Oldroyd and Downie, 2008).Protein phosphorylation is a central mechanism of signal transfer in cells (Laugesen et al., 2006; Peck, 2006; Huber, 2007). Several characterized protein kinases are required for symbiosis signal transduction in M. truncatula roots (Lévy et al., 2004; Yoshida and Parniske, 2005; Smit et al., 2007). A recent antibody-based study of cultured M. truncatula cells observed protein phosphorylation changes at the proteomic level in response to fungal infection (Trapphoff et al., 2009); however, the target residues of the phosphorylation events were not determined. A variety of studies have determined in vitro phosphorylation sites on legume proteins and demonstrated the biological importance of the target residues by mutagenesis (Yoshida and Parniske, 2005; Arrighi et al., 2006; Lima et al., 2006; Miyahara et al., 2008; Yano et al., 2008). To our knowledge, only six sites of in vivo protein phosphorylation have been detected for M. truncatula (Laugesen et al., 2006; Lima et al., 2006; Wienkoop et al., 2008), demonstrating the need for the identification of endogenous protein phosphorylation sites in legume model organisms on a proteome-wide scale.While considerable advancements have been made in the global analysis of protein phosphorylation (Nita-Lazar et al., 2008; Macek et al., 2009; Piggee, 2009; Thingholm et al., 2009), phosphoproteomics in plants has lagged years behind that of the mammalian systems (Kersten et al., 2006, 2009; Peck, 2006), which have more fully sequenced genomes and better annotated protein predictions. Arabidopsis (Arabidopsis thaliana), the first plant genome sequenced (Arabidopsis Genome Initiative, 2000), is now predicted to have over 1,000 protein kinases (Finn et al., 2008), approximately twice as many as in human (Manning et al., 2002). Because many of the kinases in the commonly studied mammalian systems are not conserved in the plant kingdom, there is significant need for large-scale phosphoproteomic technologies to discern the intricacies of phosphorylation-mediated cell signaling in plants. With the high mass accuracy afforded by the linear ion trap-orbitrap hybrid mass spectrometer (Makarov et al., 2006; Yates et al., 2006), recent studies in Arabidopsis have reported 2,597 phosphopeptides from suspension cell culture (Sugiyama et al., 2008) and 3,029 phosphopeptides from seedlings (Reiland et al., 2009).All previous large-scale plant phosphoproteomic studies have relied solely on collision-activated dissociation (CAD) during tandem mass spectrometry (MS/MS) and have not taken advantage of the more recently developed methods (Kersten et al., 2009) electron capture dissociation (Kelleher et al., 1999) or electron transfer dissociation (ETD; Coon et al., 2004; Syka et al., 2004). Mapping sites of posttranslational modifications, such as phosphorylation, is often more straightforward using electron-based fragmentation methods, as they frequently produce a full spectrum of sequence-informative ions without causing neutral loss of the modifying functional groups (Meng et al., 2005; Chi et al., 2007; Khidekel et al., 2007; Molina et al., 2007; Wiesner et al., 2008; Chalkley et al., 2009; Swaney et al., 2009). With an ETD-enabled hybrid orbitrap mass spectrometer (McAlister et al., 2007, 2008), we previously compared the performance of CAD and ETD tandem MS for large-scale identification of phosphopeptides (Swaney et al., 2009). ETD identified a greater percentage of unique phosphopeptides and more frequently localized phosphorylation sites. Still, the low overlap of identified phosphopeptides indicates that the two methods are highly complementary. With this in mind, we recently developed a decision tree-driven tandem MS algorithm to select the optimal fragmentation method for each precursor (Swaney et al., 2008).Here, we utilize this technology to map sites of in vivo protein phosphorylation in roots of M. truncatula Jemalong A17 plants. Phosphoproteins, from both whole-cell lysate and membrane-enriched fractions, were analyzed after digestion with a variety of different enzymes individually. Utilizing the complementary fragmentation methods of ETD and CAD, we report 3,404 nonredundant phosphorylation sites at an estimated false discovery rate (FDR) of 1%. Analysis of these data revealed several phosphorylation motifs not previously observed in plants. The phosphorylation sites identified provide insight into the potential regulation of key proteins involved in rhizobial symbiosis, potential consensus sequences by which kinases recognize their substrates, and critical phosphorylation events that are conserved between plant species.  相似文献   
947.

Background  

The sweet, floral flavor typical of Muscat varieties (Muscats), due to high levels of monoterpenoids (geraniol, linalool and nerol), is highly distinct and has been greatly appreciated both in table grapes and in wine since ancient times. Muscat flavor determination in grape (Vitis vinifera L.) has up to now been studied by evaluating monoterpenoid levels through QTL analysis. These studies have revealed co-localization of 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS) with the major QTL positioned on chromosome 5.  相似文献   
948.
TLR4 plays a central role in resistance to pyelonephritis caused by uropathogenic Escherichia coli (UPEC). It has been suggested that renal tubule epithelial cells expressing TLRs may play a key role in inflammatory disorders and in initiating host defenses. In this study we used an experimental mouse model of ascending urinary tract infection to show that UPEC isolates preferentially adhered to the apical surface of medullary collecting duct (MCD) intercalated cells. UPEC-infected C3H/HeJ (Lps(d)) mice carrying an inactivating mutation of tlr4 failed to clear renal bacteria and exhibited a dramatic slump in proinflammatory mediators as compared with infected wild-type C3H/HeOuJ (Lps(n)) mice. However, the level of expression of the leukocyte chemoattractants MIP-2 and TNF-alpha still remained greater in UPEC-infected than in naive C3H/HeJ (Lps(d)) mice. Using primary cultures of microdissected Lps(n) MCDs that expressed TLR4 and its accessory molecules MD2, MyD88, and CD14, we also show that UPECs stimulated both a TLR4-mediated, MyD88-dependent, TIR domain-containing adaptor-inducing IFN-beta-independent pathway and a TLR4-independent pathway, leading to bipolarized secretion of MIP-2. Stimulation by UPECs of the TLR4-mediated pathway in Lps(n) MCDs leads to the activation of NF-kappaB, and MAPK p38, ERK1/2, and JNK. In addition, UPECs stimulated TLR4-independent signaling by activating a TNF receptor-associated factor 2-apoptosis signal-regulatory kinase 1-JNK pathway. These findings demonstrate that epithelial collecting duct cells are actively involved in the initiation of an immune response via several distinct signaling pathways and suggest that intercalated cells play an active role in the recognition of UPECs colonizing the kidneys.  相似文献   
949.
Imaging methods can give both temporal and spatial dimensions to characterize the processes in progression of and/or treatment of specific disease Subcutaneous tumors can be cured after electrochemotherapy (ECT). Growth and reduction of tumors as a result of cytotoxic therapy can be followed by fluorescence video imaging directly on the same animal after treatment. Imaging of tumors should bring more information on the cellular effects of ECT. Green fluorescent protein (eGFP) expressing B16F10 and LPB tumors implanted in C57Bl/6 mice were treated with ECT with cisplatin. The growth or regression of the tumors was monitored either classically by using a caliper or by a manual definition of the region of interest where critical fluorescence levels were detected on the animals. A very good correlation between the two methods was observed. The eGFP mean fluorescence emission was only slightly affected by ECT with intravenously injected cisplatin. Ex vivo observations under a fluorescence microscope showed that eGFP was only detected on the outer layer of the tumor. No fluorescence was detected in the central part of the tumors, which were necrotic.  相似文献   
950.
Our aim was to investigate by in vivo biopanning the lesions developed early in atherosclerosis and identify human antibodies that home to diseased regions. We have designed a two-step approach for a rapid isolation of human Monoclonal phage-display single-chain antibodies (MoPhabs) reactive with proteins found in lesions developed in an animal model of atherosclerosis. After a single round of in vivo biopanning, the MoPhabs were eluted from diseased sections of rabbit aorta identified by histology and NMR microscopy. MoPhabs expressed in situ were selected by subtractive colony filter screening for their capacity to recognize atherosclerotic but not normal aorta. MoPhabs selected by our method predominantly bind atherosclerotic lesions. Two of them, B3.3G and B3.GER, produced as scFv fragments, recognized an epitope present on the surface in early atherosclerotic lesions and within the intimal thickness in more complex plaques. These human MoPhabs homed to atherosclerotic lesions in ApoE(-/-) mice after in vivo injection. A protein of approximately 56 kDa recognized by B3.3G was affinity-purified and identified by mass spectrometry analysis as vitronectin. This is the first time that single round in vivo biopanning has been used to select human antibodies as candidates for diagnostic imaging and for obtaining insight into targets displayed in atherosclerotic plaques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号