首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   78篇
  国内免费   1篇
  2022年   3篇
  2021年   9篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   19篇
  2015年   34篇
  2014年   35篇
  2013年   44篇
  2012年   78篇
  2011年   75篇
  2010年   51篇
  2009年   56篇
  2008年   66篇
  2007年   93篇
  2006年   80篇
  2005年   84篇
  2004年   67篇
  2003年   63篇
  2002年   94篇
  2001年   19篇
  2000年   12篇
  1999年   17篇
  1998年   17篇
  1997年   15篇
  1996年   15篇
  1995年   23篇
  1994年   13篇
  1993年   16篇
  1992年   13篇
  1991年   9篇
  1990年   11篇
  1989年   13篇
  1988年   10篇
  1987年   5篇
  1986年   6篇
  1985年   10篇
  1984年   7篇
  1983年   7篇
  1982年   11篇
  1981年   17篇
  1980年   9篇
  1979年   10篇
  1978年   11篇
  1977年   3篇
  1976年   10篇
  1975年   6篇
  1974年   6篇
  1973年   8篇
  1961年   4篇
排序方式: 共有1313条查询结果,搜索用时 390 毫秒
821.
Ig gene conversion is most likely initiated by activation-induced cytidine deaminase-mediated cytosine deamination. If the resulting uracils need to be further processed by uracil DNA glycosylase (UNG), UNG inactivation should block gene conversion and induce transition mutations. In this study, we report that this is indeed the phenotype in the B cell line DT40. Ig gene conversion is almost completely extinguished in the UNG-deficient mutant and large numbers of transition mutations at C/G bases accumulate within the rearranged Ig L chain gene (IgL). The mutation rate of UNG-deficient cells is about seven times higher than that of pseudo V gene-deleted (psiV-) cells in which mutations arise presumably after uracil excision. In addition, UNG-deficient cells show relatively more mutations upstream and downstream of the VJ segment. This suggests that hypermutating B cells process activation-induced cytidine deaminase-induced uracils with approximately one-seventh of uracils giving rise to mutations depending on their position.  相似文献   
822.
823.
A series of histidine-containing peptides (LAH4X6) was designed to investigate the membrane interactions of selected side chains. To this purpose, their pH-dependent transitions from in-plane to transmembrane orientations were investigated by attenuated total reflection Fourier transform infrared and oriented solid-state NMR spectroscopies. Peptides of the same family have previously been shown to exhibit antibiotic and DNA transfection activities. Solution NMR spectroscopy indicates that these peptides form amphipathic helical structures in membrane environments, and the technique was also used to characterize the pK values of all histidines in the presence of detergent micelles. Whereas one face of the amphipathic helix is clearly hydrophobic, the opposite side is flanked by four histidines surrounding six leucine, alanine, glycine, tryptophan, or tyrosine residues, respectively. This diversity in peptide composition causes pronounced shifts in the midpoint pH of the in-plane to transmembrane helical transition, which is completely abolished for the peptides carrying the most hydrophilic amino acid residues. These properties open up a conceptually new approach to study in a quantitative manner the hydrophobic as well as specific interactions of amino acids in membranes. Notably, the resulting scale for whole residue transitions from the bilayer interface to the hydrophobic membrane interior is obtained from extended helical sequences in lipid bilayers.  相似文献   
824.
Alpha-synuclein (alpha-syn) is a 140-residue protein that aggregates in intraneuronal inclusions called Lewy bodies in Parkinson's disease (PD). It is composed of an N-terminal domain with a propensity to bind lipids and a C-terminal domain rich in acidic residues (the acidic tail). The objective of this study was to examine the effect of Ca(2+) on the acidic tail conformation in lipid-bound alpha-syn. We exploit the extreme sensitivity of the band III fluorescence emission peak of the pyrene fluorophore to the polarity of its microenvironment to monitor subtle conformational response of the alpha-syn acidic tail to Ca(2+). Using recombinant human alpha-syn bearing a pyrene to probe either the N-terminal domain or the acidic tail, we noted that lipid binding resulted in an increase in band III emission intensity in the pyrene probe tagging the N-terminal domain but not that in the acidic tail. This suggests that the protein is anchored to the lipid surface via the N-terminal domain. However, addition of Ca(2+) caused an increase in band III emission intensity in the pyrene tagging the acidic tail, with a corresponding increased susceptibility to quenching by quenchers located in the lipid milieu, indicative of lipid interaction of this domain. Taken together with the increased beta-sheet content of membrane-associated alpha-syn in the presence of Ca(2+), we propose a model wherein initial lipid interaction occurs via the N-terminal domain, followed by a Ca(2+)-triggered membrane association of the acidic tail as a potential mechanism leading to alpha-syn aggregation. These observations have direct implications in the role of age-related oxidative stress and the attendant cellular Ca(2+) dysregulation as critical factors in alpha-syn aggregation in PD.  相似文献   
825.
The glycosyl transferase of the Escherichia coli bifunctional penicillin-binding protein (PBP) 1b catalyzes the assembly of lipid-transported N-acetylglucosaminyl-beta-1,4-N-acetylmuramoyl-L-Ala-gamma-D-Glu-meso-A2pm-D-Ala-D-Ala units (lipid II) into linear peptidoglycan chains. These units are linked, at C1 of N-acetylmuramic acid (MurNAc), to a C55 undecaprenyl pyrophosphate. In an in vitro assay, lipid II functions both as a glycosyl donor and as a glycosyl acceptor substrate. Using substrate analogues, it is suggested that the specificity of the enzyme for the glycosyl donor substrate differs from that for the acceptor. The donor substrate requires the presence of both N-acetylglucosamine (GlcNAc) and MurNAc and a reactive group on C1 of the MurNAc and does not absolutely require the lipid chain which can be replaced by uridine. The enzyme appears to prefer an acceptor substrate containing a polyprenyl pyrophosphate on C1 of the MurNAc sugar. The problem of glycan chain elongation that presumably proceeds by the repetitive addition of disaccharide peptide units at their reducing end is discussed.  相似文献   
826.
Functional and structural studies on G-protein-coupled receptors (GPCRs) at molecular levels require producing and purifying high levels of receptors, and recombinant mammalian cell expression systems constitute the best systems to obtain receptors resembling those expressed in natural environments. In the course of increasing GPCR expression in Chinese hamster ovary (CHO) cells, we have expressed mu (μ)- and kappa (κ)-opioid receptors and neuropeptide FF(1) and FF(2) receptors (NPFF(1) and NPFF(2), respectively) in dimethyl sulfoxide. This treatment did not modify the affinity (K(d)) for any receptor, but a significant increase in functional expression levels was observed for all receptors with the noticeable exception of NPFF(1).  相似文献   
827.
Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.  相似文献   
828.
Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms.  相似文献   
829.
L Wu  R Mincheva  Y Xu  JM Raquez  P Dubois 《Biomacromolecules》2012,13(9):2973-2981
Novel potentially biobased aliphatic-aromatic copolyesters poly(butylene succinate-co-butylene furandicarboxylate) (PBSFs) in full composition range were successfully synthesized from 2,5-furandicarboxylic acid (FA), succinic acid (SA), and 1,4-butanediol (BDO) via an esterification and polycondensation process using tetrabutyl titanate (TBT) or TBT/La(acac)(3) as catalyst. The copolyesters were characterized by size exclusion chromatography (SEC), Fourier transform infrared (FTIR), (1)H NMR, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and their tensile properties were also evaluated. The weight average molecular weight (M(w)) ranges from 39?000 to 89?000 g/mol. The copolyesters are random copolymers whose composition is well controlled by the feed ratio of the diacid monomers. PBSFs have excellent thermal stability. The glass transition temperature (T(g)) increases continuously with ?(BF) and agrees well with the Fox equation. The crystallizability and T(m) decrease with increasing butylene furandicarboxylate (BF) unit content (?(BF)) from 0 to 40 mol %, but rise again at ?(BF) of 50-100 mol %. Consequently, the tensile modulus and strength decrease, and the elongation at break increases with ?(BF) in the range of 0-40 mol %. At higher ?(BF), the modulus and strength increase and the ultimate elongation decreases. Thus, depending on ?(BF), the structure and properties of PBSFs can be tuned ranging from crystalline polymers possessing good tensile modulus (360-1800 MPa) and strength (20-35 MPa) to nearly amorphous polymer of low T(g) and high elongation (~600%), and therefore they may find applications in thermoplastics as well as elastomers or impact modifiers.  相似文献   
830.
Hemiacetals of pyridine-2-carbaldehyde derivatives and volatile alcohols can be stabilized in organic solution in the presence of protons or different metal cations. Despite the inherent instability of hemiacetals in H(2) O, stabilizing them with zinc(II) triflate and adding them to a cationic surfactant formulation resulted in the slow release of the alcohol from cotton surfaces being treated with the hemiacetal complex. Stabilized hemiacetals might thus be suitable delivery systems of bioactive volatiles by rapid hydrolysis in H(2) O-based media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号