首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1289篇
  免费   82篇
  国内免费   1篇
  1372篇
  2021年   11篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   18篇
  2015年   35篇
  2014年   39篇
  2013年   45篇
  2012年   87篇
  2011年   77篇
  2010年   52篇
  2009年   58篇
  2008年   66篇
  2007年   93篇
  2006年   81篇
  2005年   88篇
  2004年   69篇
  2003年   65篇
  2002年   94篇
  2001年   19篇
  2000年   14篇
  1999年   18篇
  1998年   18篇
  1997年   15篇
  1996年   15篇
  1995年   23篇
  1994年   13篇
  1993年   18篇
  1992年   14篇
  1991年   10篇
  1990年   11篇
  1989年   13篇
  1988年   12篇
  1987年   8篇
  1986年   8篇
  1985年   10篇
  1984年   8篇
  1983年   10篇
  1982年   11篇
  1981年   17篇
  1980年   9篇
  1979年   11篇
  1978年   11篇
  1977年   4篇
  1976年   10篇
  1975年   6篇
  1974年   6篇
  1973年   7篇
  1971年   5篇
  1961年   4篇
排序方式: 共有1372条查询结果,搜索用时 15 毫秒
101.
ADAMs (A Disintegrin And Metalloprotease domain) are metalloprotease-disintegrin proteins that have been implicated in cell adhesion, protein ectodomain shedding, matrix protein degradation and cell fusion. Since such events are critical for bone resorption and osteoclast recruitment, we investigated whether they require ADAMs. We report here which ADAMs we have identified in bone cells, as well as our analysis of the generation, migration and resorptive activity of osteoclasts in developing metatarsals of mouse embryos lacking catalytically active ADAM 17 [TNFalpha converting enzyme (TACE)]. The absence of TACE activity still allowed the generation of cells showing an osteoclastic phenotype, but prevented their migration into the core of the diaphysis and the subsequent formation of marrow cavity. This suggests a role of TACE in the recruitment of osteoclasts to future resorption sites.  相似文献   
102.
Hyperglycemia induces defects in angiogenesis without alteration in the expression of major vascular growth factors in the chicken chorioallantoic membrane (CAM) model. A direct negative effect of hyperglycemia on angiogenesis may participate in failures of therapeutic angiogenesis trials. Here, we tested the hypothesis that the response to pro-angiogenic molecules such as angiotensin-converting enzyme (ACE), endothelin-1 (ET-1), and vascular endothelial growth factor-A (VEGF) is altered by hyperglycemia. Transfected (Chinese hamster ovary [CHO] or human embryonic kidney [HEK]) cells overexpressing ACE, ET-1, or VEGF were deposed onto the CAM of hyperglycemic or control embryos. The proangiogenic effect was evaluated 3 d later by angiography and histological analyses. Gene expression in response to these factors was assessed by in situ hybridization. Only VEGF overexpression evoked a proangiogenic response in the CAM from hyperglycemic embryos, upregulating the expression of endogenous VEGF, VEGF-R2, and Tie-2, all of them related to activation of endothelial cells. In conclusion, in a model where hyperglycemia does not alter the major vascular growth factor expression, the negative effect of diabetes on capillary density was overcome only by VEGF overexpression, whereas responses to other vasoactive peptides were practically abolished under hyperglycemic conditions.  相似文献   
103.

Background and Aims

The mechanisms of floral nectar production in buckwheat (Fagopyrum esculentum, Polygonaceae), a distylous pseudo-cereal, have received relatively little attention, prompting an investigation of the factors that regulate this process. The aim was to perform a refined study of the structures that secrete nectar and of the internal and external parameters influencing nectar volumes and sugar concentrations.

Methods

In order to control environmental parameters, plants were cultivated in growth rooms under controlled conditions. The structure of nectaries was studied based on histological sections from flowers and flower buds. Nectar was extracted using glass micropipettes and the sugar concentration was measured with a hand refractometer. Sugar concentration in the phloem sap was measured using the anthrone method. To test the influence of photosynthesis on nectar production, different light and defoliation treatments were applied.

Key Results

Unicellular trichomes were located in the epidermis at the ventral part of eight nectary glands situated on the flower receptacle alternately with stamens. Vascular bundles consisting of both phloem and xylem were identified at the boundary between a multilayered nectary parenchyma and a sub-nectary parenchyma with chloroplasts. A higher volume of nectar in thrum morphs was observed. No other difference was found in morphology or in sugar supply to inflorescences between morphs. Nectar secretion was strongly influenced by plant age and inflorescence position. Nectar volumes were higher in the upper inflorescences and during the flowering peak. Light had a dual role, (1) acting directly on reproductive structures to trigger flower opening, which conditions nectar secretion, and (2) stimulating photosynthetic activity, which regulates nectar accumulation in open flowers.

Conclusions

In buckwheat, nectar is secreted by trichomes and probably proceeds, at least in part, from phloem sap. Nectar secretion is strongly influenced by floral morph type, plant age, inflorescence position and light.Key words: Buckwheat, distyly, Fagopyrum esculentum, inflorescence position, morph comparisons, nectary histology, nectar sugar concentration, nectar volume, light intensity, organ biomass, phloem sap, plant age  相似文献   
104.
Summary Nitrilotriacetic acid (NTA), when added to solid or liquid media, stimulated the growth of Pseudomonas strains, whereas other synthetic iron-chelators, such as ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, ethylenediaminedihydroxyphenyl acetic acid or ethylene glycol-bis-(-aminoethyl ether)-tetraacetic acid, resulted in concentration-dependent growth inhibition. Experimental data such as stimulation of growth in iron-poor media, inhibitory effect on siderophore biosynthesis, promotion of iron-uptake by NTA, together with the inability of the Pseudomonas strains to use NTA as a carbon and/or a nitrogen source, demonstrated that NTA favours the bacterial growth of Pseudomonas through its scavenging properties for iron. Offprint requests to: J.-M. Meyer  相似文献   
105.
In this study, a new pathosystem was established using the model plant Medicago truncatula and Colletotrichum trifolii, the causal agent of anthracnose on Medicago sativa. Screening of a few M. truncatula lines identified Jemalong and F83005.5 as resistant and susceptible to Colletotrichum trifolii race 1, respectively. Symptom analysis and cytological studies indicated that resistance of Jemalong was associated with a hypersensitive response of the plant. The two selected lines were crossed, and inoculations with C. trifolii were performed on the resulting F1 and F2 progenies. Examination of the disease phenotypes indicated that resistance was dominant and was probably due to a major resistance gene. Molecular components of the resistance were analyzed through macroarray experiments. Expression profiling of 126 expressed sequence tags corresponding to 92 genes, which were selected for their putative functions in plant defense or signal transduction, were compared in Jemalong and F83005.5 lines. A strong correlation was observed between the number of up-regulated genes and the resistance phenotype. Large differences appeared at 48 h postinoculation; more than 40% of the tested genes were up-regulated in the Jemalong line compared with only 10% in the susceptible line. Interestingly, some nodulin genes were also induced in the resistant line upon inoculation with C. trifolii.  相似文献   
106.
Goya RG  Brown OA  Pléau JM  Dardenne M 《Peptides》2004,25(1):139-142
Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. It consists of a nonapeptide component coupled to the ion zinc, which confers biological activity to this molecule. After its discovery in the early 1970, thymulin was characterized as a thymic hormone involved in several aspects of intra- and extrathymic T-cell differentiation. Subsequently, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, an emerging core of information points to thymulin as a hypophysotropic peptide. Here we review the evidence supporting the hypothesis that thymulin is an important player in the hypophyso-thymic axis.  相似文献   
107.
We investigated in rat the effects of ozone exposure (0.7 ppm) for 5 h on the catecholamine biosynthesis and turnover in sympathetic efferents and various brain areas. For this purpose, the activity of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, was assessed in superior cervical ganglia and in two major noradrenergic cell groups, A2 and A6 (locus coeruleus). Tyrosine hydroxylase activity was estimated in vivo by measuring the accumulation of l-dihydroxyphenylalanine after pharmacological blockade of L-aromatic acid decarboxylases by NSD-1015 (100 mg/kg i.p.). The catecholamine turnover rate was measured after inhibition of tyrosine hydroxylase by alpha-methyl-para-tyrosine (AMPT, 250 mg/kg, i.p., 2.5 h) in peripheral sympathetic target organ (heart and lungs) as well as in some brain catecholamine terminal areas (cerebral cortex, hypothalamus and striatum). Ozone caused differential effects according to the structure. Catecholamine biosynthesis was stimulated in superior cervical ganglia (+44%, P < 0.05) and caudal A2 subset (+126%, P < 0.01), whereas catecholamine turnover was increased in heart (+183%, P < 0.01) and cortex (+22%, P < 0.05). On the other hand, catecholamine turnover was inhibited in lungs (-53%, P < 0.05) and striatum (-24%, P < 0.05). A brief exposure to ozone, at a concentration chosen to mimic pollution level encountered in urban areas, can modulate catecholamine biosynthesis and utilization rate in the sympathetic and central neurones.  相似文献   
108.
Biologically active cyclic tetrapeptides, usually found among fungi metabolites, exhibit phytotoxic or cytostatic activities that are likely to be governed by specific conformations adopted in solution. For conformational studies and drug design, there is a strong interest in using fast and reliable methods to determine correctly the conformational population of cyclotetrapeptides. We show here that standard molecular mechanics computational approach gives satisfactory results. The method was validated step by step by experimental data either obtained after synthesis and NMR analysis, or found in the literature. The cyclo(Gly)(4), cyclo(Ala)(4), cyclo(Sar)(4), and cyclo(SarGly)(2) peptides were used to evaluate the prediction of the peptide backbone conformation, and the detailed conformational analysis of tentoxin, a natural phytotoxic cyclotetrapeptide in which N-alkylated peptide bonds alternate with regular secondary ones, was used to validate the computation of conformers proportions. From the knowledge of an initial cyclic primary structure and of the D or L configuration of the amino acids, we show that it is possible to determine the exact orientation of carbonyl groups and to predict the nature of conformers present in solution. The proportion of each conformer can be inferred from a statistical thermodynamics approach by using the potential energy values of each conformer, computed by molecular mechanics methods with the TRIPOS force field, which allowed us to account for the solvent. The solvent contribution was processed by two different methods according to the nature of the interactions: whether through the dielectric constant introduced in the electrostatic potential, when interaction with solute molecules are weak or negligible, or through the computation of free energy of solvation using the algorithm SILVERWARE for solvents explicitly interacting with the solute. When applied to tentoxin, this conformational analysis yielded results in very good agreement with the experimental data reported by Pinet et al. (Biopolymers, 1995, Vol. 36, pp. 135-152), on both the nature of existing conformers and their relative proportions, whatever the nature of the considered solvent.  相似文献   
109.
Following repeated administration of factor VIII (FVIII), a significant number of hemophilia A patients develop antibodies (Abs), inhibiting the procoagulant activity of infused FVIII. We have designed an approach based on the blocking of the deleterious activity of these Abs by peptide decoys mimicking the anti-FVIII Ab epitopes. Here, the well characterized inhibitory monoclonal Ab ESH8 served as a model. Several phage peptide libraries were screened for specific binding to ESH8. Seven constrained dodecapeptide sequences were obtained. Six sequences carried the consensus motif, hydrophobic-(Y/F)GKTXL. This motif showed a certain similarity with the (2231)QVDFQKTMKV(2240) sequence of the C(2) domain. In the seventh sequence, YCNPSIGDKNCR, the residues GDKN are similar to the sequence (2267)DGHQ(2270). Upon inspection of the C(2) domain crystallographic structure, the two stretches QVDFQKTMKV and DGHQ appeared close together in space and might constitute a discontinuous epitope. Corresponding synthetic peptides were able to inhibit the binding of ESH8 to FVIII in a specific and dose-dependent manner. Moreover, the ability of the selected peptides to neutralize the inhibitory activity of ESH8 was demonstrated in functional tests as well as in vivo in a murine model of hemophilia A. This study demonstrates the potential of this approach to neutralize the activity of potent inhibitory Abs.  相似文献   
110.
Bacteriorhodopsin and rhodopsin crystal structures were used as templates to build structural models of the mouse and human serotonin (5-HT)-2B receptors (5-HT(2B)Rs). Serotonin was docked to the receptors, and the amino acids predicted to participate to its binding were subjected to mutagenesis. 5-HT binding affinity and 5-HT-induced inositol triphosphate production were measured in LMTK(-) cells transfected with either wild-type or mutated receptor genes. According to these measurements, the bacteriorhodopsin-based models of the 5-HT(2B)Rs appear more confident than the rhodopsin-based ones. Residues belonging to the transmembrane domains 3 and 6, i.e. Asp(3.32), Ser(3.36), Phe(6.52), and Asn(6.55), make direct contacts with 5-HT. In addition, Trp(3.28), Phe(3.35), Phe(6.52), and Phe(7.38) form an aromatic box surrounding 5-HT. The specificity of human and mouse 5-HT(2B)Rs may be reflected by different rearrangements of the aromatic network upon 5-HT binding. Two amino acids close to Pro(5.50) in the human transmembrane domain 5 sequence were permuted to introduce a "mouse-like" sequence. This change was enough to confer the human 5-HT(2B)R properties similar to those of the mouse. Taken together, the computed models and the site-directed mutagenesis experiments give a structural explanation to (i) the different 5-HT pK(D) values measured with the human and mouse 5-HT(2B)Rs (7.9 and 5.8, respectively) and (ii) the specificity of 5-HT binding to 5-HT(2B)Rs as compared with other serotonergic G-protein coupled receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号