首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1285篇
  免费   79篇
  国内免费   1篇
  2021年   10篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   18篇
  2015年   33篇
  2014年   35篇
  2013年   45篇
  2012年   78篇
  2011年   75篇
  2010年   51篇
  2009年   56篇
  2008年   67篇
  2007年   93篇
  2006年   80篇
  2005年   84篇
  2004年   67篇
  2003年   63篇
  2002年   94篇
  2001年   22篇
  2000年   15篇
  1999年   18篇
  1998年   18篇
  1997年   15篇
  1996年   15篇
  1995年   23篇
  1994年   13篇
  1993年   16篇
  1992年   13篇
  1991年   9篇
  1990年   15篇
  1989年   14篇
  1988年   17篇
  1987年   8篇
  1986年   12篇
  1985年   10篇
  1984年   10篇
  1983年   9篇
  1982年   14篇
  1981年   20篇
  1980年   15篇
  1979年   10篇
  1978年   12篇
  1977年   5篇
  1976年   13篇
  1975年   7篇
  1974年   7篇
  1973年   7篇
  1966年   2篇
  1961年   4篇
排序方式: 共有1365条查询结果,搜索用时 15 毫秒
81.
We previously demonstrated that dendritic cell (DC) pulsing with antigen-encoded mRNA resulted in the loading of both major histocompatibility complex class I and II antigen presentation pathways and the delivery of an activation signal. Coculture of mRNA-pulsed DC with T cells led to the induction of a potent primary immune response. DC, in addition to recognizing foreign antigens through pattern recognition receptors, also must respond to altered self, transformed, or intracellularly infected cells. This occurs through cell surface receptors that recognize products of inflammation and cell death. In this report, we characterize two signaling pathways utilized by extracellular mRNA to activate DC. In addition, a novel ligand, poly(A), is identified that mediates signaling through a receptor that can be inhibited by pertussis toxin and suramin and can be desensitized by ATP and ADP, suggesting a P2Y type nucleotide receptor. The role of this signaling activity in vaccine design and the potential effect of mRNA released by damaged cells in the induction of immune responsiveness is discussed.  相似文献   
82.
Mutations of CIAS1 have recently been shown to underlie familial cold urticaria (FCU) and Muckle-Wells syndrome (MWS), in three families and one family, respectively. These rare autosomal dominant diseases are both characterized by recurrent inflammatory crises that start in childhood and that are generally associated with fever, arthralgia, and urticaria. The presence of sensorineural deafness that occurs later in life is characteristic of MWS. Amyloidosis of the amyloidosis-associated type is the main complication of MWS and is sometimes associated with FCU. In FCU, cold exposure is the triggering factor of the inflammatory crisis. We identified CIAS1 mutations, all located in exon 3, in nine unrelated families with MWS and in three unrelated families with FCU, originating from France, England, and Algeria. Five mutations--namely, R260W, D303N, T348M, A439T, and G569R--were novel. The R260W mutation was identified in two families with MWS and in two families with FCU, of different ethnic origins, thereby demonstrating that a single CIAS1 mutation may cause both syndromes. This result indicates that modifier genes are involved in determining either a MWS or a FCU phenotype. The finding of the G569R mutation in an asymptomatic individual further emphasizes the importance of such modifier a gene (or genes) in determining the disease phenotype. Identification of this gene (or these genes) is likely to have significant therapeutic implications for these severe diseases.  相似文献   
83.
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, combined with hydrogen/deuterium exchange technique and time-resolved fluorescence spectroscopy, has been used to investigate the changes in structure and dynamics that underlie the thermodynamic stability differences observed for three closely homologous proteins: dendrotoxins I and K, and bovine pancreatic trypsin inhibitor (BPTI). The experiments were performed on proteins under their native state and a modified form, obtained by selective reduction of a disulfide bond at the surface of the molecule, increasing slightly the backbone flexibility without changing the average structure. The data confirmed the high local as well as global rigidity of BPTI. In protein K, the exchange process was slow during the first 2 h of exchange, presumably reflecting a compact three-dimensional conformation, and then increased rapidly, the internal amide protons of the beta-strands exchanging 10-fold faster than in BPTI or protein I. The most probable destabilizing element was identified as Pro32, in the core of the beta-sheet. Protein I was found to present a 10% more expanded volume than protein K or BPTI, and there is a possible correlation between the resulting increased flexibility of the molecule and the lower thermodynamic stability observed for this protein. Interestingly, the interior amide protons of the beta-sheet structure were found to be as protected against exchange in protein I as in BPTI, suggesting that, although globally more flexible than that of Toxin K or BPTI, the structure of Toxin I could be locally quite rigid. The structural factors suspected to be responsible for the differences in internal flexibility of the two toxins could play a significant role in determining their functional properties.  相似文献   
84.
85.
From Pseudomonas fluorescens PL7 and PL8 structurally related pyoverdins were isolated and their primary structures were elucidated by spectroscopic methods and degradation reactions. Despite of some structural differences both Fe(III) complexes are taken up by either strain with a high rate. The implications regarding the recognition at the cell surface are discussed.  相似文献   
86.
The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.  相似文献   
87.
88.
Coagulation factor VIIa (FVIIa) is a key protease initiating the coagulation cascade in the presence of its receptor, tissue factor (TF). FVIIa elicits several cellular responses, probably involving other receptors(s) than TF. This study investigates the implication of recombinant FVIIa on the apoptosis of K562 erythroleukemia cells. These cells undergo apoptosis when induced to differentiate towards the erythroid lineage by hemin. They do not express TF, but can be transfected to do so. FVIIa treatment significantly reduced the degree of hemin-induced apoptosis in K562 cells, but not in TF+ derived transfectants. Induction of apoptosis by hemin also elicited decrease in intracellular Ca2+ concentration ([Ca2+]i), but FVIIa restored this [Ca2+]i close to that of non-treated cells. These results suggest that FVIIa acts via a TF-independent pathway to counteract apoptosis by a mechanism involving its Gla domain and linked to the maintenance of Ca2+ homeostasis in K562 cells.  相似文献   
89.

Background

Cationic lipids are at present very actively investigated for gene transfer studies and gene therapy applications. Basically, they rely on the formation of DNA/lipid aggregates via electrostatic interactions between their cationic headgroup and the negatively charged DNA. Although their structure/activity relationships are not well understood, it is generally agreed that the nature of the positive headgroup impacts on their transfection activity. Thus, we have directed our efforts toward the development of cationic lipids with novel cationic moieties. In the present work, we have explored the transfection potential of the lipophilic derivatives of the aminoglycoside kanamycin A. Indeed, aminoglycosides, which are natural polyamines known to bind to nucleic acids, provide a favorable scaffold for the synthesis of a variety of cationic lipids because of their structural features and multifunctional nature.

Methods and results

We report here the synthesis of a cationic cholesterol derivative characterized by a kanamycin A headgroup and of its polyguanidinylated derivative. The amino‐sugar‐based cationic lipid is highly efficient for gene transfection into a variety of mammalian cell lines when used either alone or as a liposomal formulation with the neutral phospholipid dioleoylphosphatidylethanolamine (DOPE). Its polyguanidinylated derivative was also found to mediate in vitro gene transfection. In addition, colloidally stable kanamycin‐cholesterol/DOPE lipoplexes were found to be efficient for gene transfection into the mouse airways in vivo.

Conclusions

These results reveal the usefulness of cationic lipids characterized by headgroups composed of an aminoglycoside or its guanidinylated derivative for gene transfection in vitro and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   
90.
SUMMARY: OligoArray is a program that computes gene specific and secondary structure free oligonucleotides for genome-scale oligonucleotide microarray construction or other applications. AVAILABILITY: The program code is distributed under the GNU General Public License and is freely available for non-profit use via request from the authors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号