首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1729篇
  免费   119篇
  国内免费   2篇
  2023年   5篇
  2022年   12篇
  2021年   19篇
  2020年   6篇
  2019年   13篇
  2018年   16篇
  2017年   11篇
  2016年   20篇
  2015年   58篇
  2014年   78篇
  2013年   93篇
  2012年   140篇
  2011年   129篇
  2010年   73篇
  2009年   70篇
  2008年   120篇
  2007年   115篇
  2006年   117篇
  2005年   112篇
  2004年   117篇
  2003年   97篇
  2002年   83篇
  2001年   18篇
  2000年   18篇
  1999年   24篇
  1998年   30篇
  1997年   32篇
  1996年   24篇
  1995年   17篇
  1994年   18篇
  1993年   15篇
  1992年   21篇
  1991年   11篇
  1990年   7篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   8篇
  1984年   9篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   7篇
  1978年   6篇
  1974年   3篇
  1973年   6篇
  1965年   2篇
  1957年   2篇
排序方式: 共有1850条查询结果,搜索用时 615 毫秒
81.
82.
Cardio/cerebrovascular diseases (CVD) have become one of the major health issue in our societies. But recent studies show that the present pathology tests to detect CVD are ineffectual as they do not consider different stages of platelet activation or the molecular dynamics involved in platelet interactions and are incapable to consider inter-individual variability. Here we propose a stochastic platelet deposition model and an inferential scheme to estimate the biologically meaningful model parameters using approximate Bayesian computation with a summary statistic that maximally discriminates between different types of patients. Inferred parameters from data collected on healthy volunteers and different patient types help us to identify specific biological parameters and hence biological reasoning behind the dysfunction for each type of patients. This work opens up an unprecedented opportunity of personalized pathology test for CVD detection and medical treatment.  相似文献   
83.
Understanding of the molecular determinants responsible for antagonist binding to the oxytocin receptor should provide important insights that facilitate rational design of potential therapeutic agents for the treatment of preterm labor. To study ligand/receptor interactions, we used a novel photosensitive radioiodinated antagonist of the human oxytocin receptor, d(CH(2))(5) [Tyr(Me)(2),Thr(4),Orn(8),Phe(3(125)I,4N(3))-NH(2)9]vasotocin. This ligand had an equivalent high affinity for human oxytocin and V(1a) vasopressin receptors expressed in Chinese hamster ovary cells. Taking advantage of this dual specificity, we conducted photoaffinity labeling experiments on both receptors. Photolabeled oxytocin and V(1a) receptors appeared as a unique protein band at 70-75 kDa and two labeled protein bands at 85-90 and 46 kDa, respectively. To identify contact sites between the antagonist and the receptors, the labeled 70-75- and the 46-kDa proteins were cleaved with CNBr and digested with Lys-C and Arg-C endoproteinases. The fragmentation patterns allowed the identification of a covalently labeled region in the oxytocin receptor transmembrane domain III consisting of the residues Leu(114)-Val(115)-Lys(116). Analysis of contact sites in the V(1a) receptor led to the identification of the homologous region consisting of the residues Val(126)-Val(127)-Lys(128). Binding domains were confirmed by mutation of several CNBr cleavage sites in the oxytocin receptor and of one Lys-C cleavage site in the V(1a) receptor. The results are in agreement with previous experimental data and three-dimensional models of agonist and antagonist binding to members of the oxytocin/vasopressin receptor family.  相似文献   
84.
OBJECTIVE: To show the effect of 7-ketocholesterol (7KC) on cellular lipid content by means of flow cytometry and the interaction of 7KC with Nile Red (NR) via ultraviolet fluorescence resonance energy transfer (FRET) excitation of NR on U937 monocytic cells by means of 2-photon excitation confocal laser scanning microscopy (CLSM). STUDY DESIGN: Untreated and 7KC-treated U937 cells were stained with NR and analyzed by flow cytometry and CLSM. 3D sequences of images were obtained by spectral analysis in a 2-photon excitation CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm, which provides factor curves and images. Factor images are the result of the FAMIS image processing method, which handles emission spectra. In FRET analysis, preparations are screened at selected UV wavelengths to avoid emission of NR in the absence of 7KC. RESULTS: During 7KC-induced cell death,flow cytometry and CLSM revealed a modification of the cellular lipid content. Factor images show FRET occurrence and subsequent colocalization of 7KC and NR. CONCLUSION: This investigation established the utility of 2-photon excitation CLSM to assess colocalization of 7KC with NR by FRET and to identify and distinguish polar and neutral lipids stained by NR that accumulate from the effect of 7KC.  相似文献   
85.
86.
87.
NMR spectroscopy has evolved dramatically over the past 15 years, establishing a new, reliable methodology for studying biomacromolecules at atomic resolution. The three-dimensional structure and dynamics of a biomolecule or a biomolecular complex is only one of the main types of information available using NMR. The spectral assignment to the specific nuclei of a biostructure is a very precise reflection of their electronic environment. Any change in this environment due to a structural change, the binding of a ligand or the redox state of a redox cofactor, will be very sensitively reported by changes in the different NMR parameters. The capabilities of the NMR method are currently expanding dramatically and it is turning into a powerful means to study biosystems dynamically in exchange between different conformations, exchanging ligands, transient complexes, or the activation/inhibition of regulated enzymes. We review here several NMR studies that have appeared during the past 5 or 6 years in the field of redox proteins of plants, yeasts and photosynthetic bacteria. These new results illustrate the recent biomolecular NMR evolution and provide new physiological models for understanding the different types of electron transfer, including glutaredoxins, thioredoxins and their dependent enzymes, the ferredoxin-NADP oxidoreductase complex, flavodoxins, the plastocyanin-cytochrome f complex, and cytochromes c.  相似文献   
88.
We investigated in rat the effects of ozone exposure (0.7 ppm) for 5 h on the catecholamine biosynthesis and turnover in sympathetic efferents and various brain areas. For this purpose, the activity of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, was assessed in superior cervical ganglia and in two major noradrenergic cell groups, A2 and A6 (locus coeruleus). Tyrosine hydroxylase activity was estimated in vivo by measuring the accumulation of l-dihydroxyphenylalanine after pharmacological blockade of L-aromatic acid decarboxylases by NSD-1015 (100 mg/kg i.p.). The catecholamine turnover rate was measured after inhibition of tyrosine hydroxylase by alpha-methyl-para-tyrosine (AMPT, 250 mg/kg, i.p., 2.5 h) in peripheral sympathetic target organ (heart and lungs) as well as in some brain catecholamine terminal areas (cerebral cortex, hypothalamus and striatum). Ozone caused differential effects according to the structure. Catecholamine biosynthesis was stimulated in superior cervical ganglia (+44%, P < 0.05) and caudal A2 subset (+126%, P < 0.01), whereas catecholamine turnover was increased in heart (+183%, P < 0.01) and cortex (+22%, P < 0.05). On the other hand, catecholamine turnover was inhibited in lungs (-53%, P < 0.05) and striatum (-24%, P < 0.05). A brief exposure to ozone, at a concentration chosen to mimic pollution level encountered in urban areas, can modulate catecholamine biosynthesis and utilization rate in the sympathetic and central neurones.  相似文献   
89.
90.
Anti‐atherosclerotic effects of vitamin E – myth or reality?   总被引:2,自引:0,他引:2  
Atherosclerosis and its complications such as coronary heart disease, myocardial infarction and stroke are the leading causes of death in the developed world. High blood pressure, diabetes, smoking and a diet high in cholesterol and lipids clearly increase the likelihood of premature atherosclerosis, albeit other factors, such as the individual genetic makeup, may play an additional role. Several epidemiological studies and intervention trials have been performed with vitamin E, and some of them showed that it prevents atherosclerosis. For a long time, vitamin E was assumed to act by decreasing the oxidation of LDL, a key step in atherosclerosis initiation. However, at the cellular level, vitamin E acts by inhibition of smooth muscle cell proliferation, platelet aggregation, monocyte adhesion, oxLDL uptake and cytokine production, all reactions implied in the progression of atherosclerosis. Recent research revealed that these effects are not the result of the antioxidant activity of vitamin E, but rather of precise molecular actions of this compound. It is assumed that specific interactions of vitamin E with enzymes and proteins are at the basis of its non-antioxidant effects. Vitamin E influences the activity of several enzymes (e.g. PKC, PP2A, COX-2, 5-lipooxygenase, nitric oxide synthase, NADPH-oxidase, superoxide dismutase, phopholipase A2) and modulates the expression of genes that are involved in atherosclerosis (e.g. scavenger receptors, integrins, selectins, cytokines, cyclins). These interactions promise to reveal the biological properties of vitamin E and allow designing better strategies for the protection against atherosclerosis progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号