首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1667篇
  免费   103篇
  国内免费   2篇
  1772篇
  2023年   5篇
  2022年   12篇
  2021年   19篇
  2020年   6篇
  2019年   11篇
  2018年   14篇
  2017年   9篇
  2016年   19篇
  2015年   53篇
  2014年   76篇
  2013年   92篇
  2012年   135篇
  2011年   125篇
  2010年   71篇
  2009年   69篇
  2008年   118篇
  2007年   113篇
  2006年   117篇
  2005年   112篇
  2004年   115篇
  2003年   94篇
  2002年   82篇
  2001年   15篇
  2000年   16篇
  1999年   23篇
  1998年   29篇
  1997年   32篇
  1996年   20篇
  1995年   13篇
  1994年   17篇
  1993年   14篇
  1992年   20篇
  1991年   8篇
  1990年   7篇
  1989年   12篇
  1988年   6篇
  1987年   7篇
  1986年   3篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1975年   2篇
  1973年   5篇
  1957年   2篇
排序方式: 共有1772条查询结果,搜索用时 15 毫秒
91.
The influence of the ionic strength on the structure of beta-lactoglobulin aggregates formed after heating at pH 7 has been studied using static and dynamic light scattering. The native protein depletion has been monitored using size exclusion chromatography. Above a critical association concentration (CAC) well-defined clusters are formed containing about 100 monomers. The CAC increases with decreasing ionic strength. The so-called primary aggregates associate to form self similar semi-flexible aggregates with a large scale structure that is only weakly dependent on the ionic strength. The local density of the aggregates increases with increasing ionic strength. At a critical gel concentration, Cg, the size of the aggregates diverges. Cg decreases from 100 g/l without added salt to 1 g/l at 0.4M NaCl. For C > Cg the system gels except at high ionic strength close to Cg where the gels collapse under gravity and a precipitate is formed.  相似文献   
92.
NMR spectroscopy has evolved dramatically over the past 15 years, establishing a new, reliable methodology for studying biomacromolecules at atomic resolution. The three-dimensional structure and dynamics of a biomolecule or a biomolecular complex is only one of the main types of information available using NMR. The spectral assignment to the specific nuclei of a biostructure is a very precise reflection of their electronic environment. Any change in this environment due to a structural change, the binding of a ligand or the redox state of a redox cofactor, will be very sensitively reported by changes in the different NMR parameters. The capabilities of the NMR method are currently expanding dramatically and it is turning into a powerful means to study biosystems dynamically in exchange between different conformations, exchanging ligands, transient complexes, or the activation/inhibition of regulated enzymes. We review here several NMR studies that have appeared during the past 5 or 6 years in the field of redox proteins of plants, yeasts and photosynthetic bacteria. These new results illustrate the recent biomolecular NMR evolution and provide new physiological models for understanding the different types of electron transfer, including glutaredoxins, thioredoxins and their dependent enzymes, the ferredoxin-NADP oxidoreductase complex, flavodoxins, the plastocyanin-cytochrome f complex, and cytochromes c.  相似文献   
93.
We investigated in rat the effects of ozone exposure (0.7 ppm) for 5 h on the catecholamine biosynthesis and turnover in sympathetic efferents and various brain areas. For this purpose, the activity of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, was assessed in superior cervical ganglia and in two major noradrenergic cell groups, A2 and A6 (locus coeruleus). Tyrosine hydroxylase activity was estimated in vivo by measuring the accumulation of l-dihydroxyphenylalanine after pharmacological blockade of L-aromatic acid decarboxylases by NSD-1015 (100 mg/kg i.p.). The catecholamine turnover rate was measured after inhibition of tyrosine hydroxylase by alpha-methyl-para-tyrosine (AMPT, 250 mg/kg, i.p., 2.5 h) in peripheral sympathetic target organ (heart and lungs) as well as in some brain catecholamine terminal areas (cerebral cortex, hypothalamus and striatum). Ozone caused differential effects according to the structure. Catecholamine biosynthesis was stimulated in superior cervical ganglia (+44%, P < 0.05) and caudal A2 subset (+126%, P < 0.01), whereas catecholamine turnover was increased in heart (+183%, P < 0.01) and cortex (+22%, P < 0.05). On the other hand, catecholamine turnover was inhibited in lungs (-53%, P < 0.05) and striatum (-24%, P < 0.05). A brief exposure to ozone, at a concentration chosen to mimic pollution level encountered in urban areas, can modulate catecholamine biosynthesis and utilization rate in the sympathetic and central neurones.  相似文献   
94.
95.
We present the pollen analysis of a new sedimentary sequence taken at La Pouretère ( 1720 m), in the mountain vegetation zone of the Marcadau valley (central Pyrenees). The Lateglacial and Holocene chronology is supported by six 14C-dating results. The complementary analysis of some vegetal macroremains, stomata, pollen-clusters and the use of pollen influx allows us to elucidate the dynamic of mountain species such as Pinus and specially Abies but also to infer the unusual part played by Betula at the beginning of the Postglacial period.  相似文献   
96.
In Saccharomyces cerevisiae, deficiencies in the ESCRT machinery trigger the mistargeting of endocytic and biosynthetic ubiquitinated cargoes to the limiting membrane of the vacuole. Surprisingly, impairment of this machinery also leads to the accumulation of various receptors and transporters at the plasma membrane in both yeast and higher eukaryotes. Using the well-characterized yeast endocytic cargo uracil permease (Fur4p), we show here that the apparent stabilization of the permease at the plasma membrane in ESCRT mutants results from an efficient recycling of the protein. Whereas several proteins as well as internalized dyes are known to be recycled in yeast, little is known about the machinery and molecular mechanisms involved. The SNARE protein Snc1p is the only cargo for which the recycling pathway is well characterized. Unlike Snc1p, endocytosed Fur4p did not pass through the Golgi apparatus en route to the plasma membrane. Although ubiquitination of Fur4p is required for its internalization, deubiquitination is not required for its recycling. In an attempt to identify actors in this new recycling pathway, we found an unexpected phenotype associated with loss of function of the Vps class C complex: cells defective for this complex are impaired for recycling of Fur4p, Snc1p, and the lipophilic dye FM4-64. Genetic analyses indicated that these phenotypes were due to the functioning of the Vps class C complex in trafficking both to and from the late endosomal compartment.  相似文献   
97.
Penicillium funiculosum Thom. was consistently isolated from pineapple-infected fruitlet (black spots). Polyphenol oxidase, peroxidase, and laccase activities were determined in extracts from contiguous and infected fruitlets. Healthy fruitlets showed a rather high level of polyphenol oxidase (optimum pH 7.0), and this activity was tremendously increased (×10) in contiguous infected fruitlets. Furthermore, infected fruitlets also exhibited laccase activity (optimum pH 4.0), while peroxidase was rather constant in both fruitlets. Browning reactions were attributed to qualitative and quantitative modifications of the enzymatic equipment (polyphenol oxidase and laccase) (p<0.0001). In infected fruiltets, sucrose and L-malic acid were present at significantly lower amounts than in healthy ones, likely owing to fungal metabolism (p<0.0001), whereas cell wall material was three times higher, which could be viewed as a defense mechanism to limit expansion of the mycelium. RID= ID= <E5>Correspondence to: </E5>S. Avallone; <E5>email:</E5> avallone&commat;siarc.cnearc.fr Received: 3 September 2002 / Accepted: 25 September 2002  相似文献   
98.
99.
Luminescence from photosynthetic material observed in darkness following illumination is a delayed fluorescence produced by a recombination of charge pairs stored in photosystem II, i.e. the back-reaction of photosynthetic charge separation. Thermoluminescence (TL) is a technique consisting of a rapid cooling followed by the progressive warming of a preilluminated sample to reveal the different types of charge pairs as successive emission bands, which are resolved better than the corresponding decay phases recorded at constant temperatures. Progress in thermoelectric Peltier elements and in compact light detectors made the development of simple, affordable and transportable instruments possible. These instruments take advantage of multifurcated light guides for combined TL, fluorescence and absorbance/reflectance measurements. Meanwhile, experiments on unfrozen leaf discs, with excitation by single turn-over flashes or far red light and infiltration by specific inhibitors/uncouplers, have led to a better understanding of in vivo TL signals. Much like chlorophyll fluorescence and in a complementary way, TL in the 0-60 degrees C temperature range not only informs on the state of photosystem II in leaf tissues and its possible alterations, but also gives a broader insight into the energetic state inside the chloroplast by probing (1) the light-induced or dark-stable thylakoid proton gradient through the protonation of the Mn oxygen-evolving complex, (2) the induction of cyclic/chlororespiratory electron flow towards the plastoquinone pool, (3) the [NADPH+ATP] assimilatory potential. By a different mechanism, warming above 60 degrees C without preillumination reveals chemiluminescence high temperature thermoluminescence (HTL) bands due to the radiative thermolysis of peroxides, which are indicators of oxidative stress in leaves.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号