首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1671篇
  免费   103篇
  国内免费   2篇
  1776篇
  2023年   5篇
  2022年   12篇
  2021年   19篇
  2020年   6篇
  2019年   11篇
  2018年   14篇
  2017年   9篇
  2016年   19篇
  2015年   53篇
  2014年   76篇
  2013年   92篇
  2012年   136篇
  2011年   127篇
  2010年   73篇
  2009年   69篇
  2008年   119篇
  2007年   113篇
  2006年   117篇
  2005年   111篇
  2004年   114篇
  2003年   95篇
  2002年   82篇
  2001年   15篇
  2000年   17篇
  1999年   23篇
  1998年   29篇
  1997年   32篇
  1996年   21篇
  1995年   13篇
  1994年   17篇
  1993年   14篇
  1992年   20篇
  1991年   8篇
  1990年   7篇
  1989年   10篇
  1988年   7篇
  1987年   8篇
  1986年   3篇
  1985年   8篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   2篇
  1973年   5篇
  1957年   2篇
排序方式: 共有1776条查询结果,搜索用时 0 毫秒
171.

Background

Long-read sequencing technologies were launched a few years ago, and in contrast with short-read sequencing technologies, they offered a promise of solving assembly problems for large and complex genomes. Moreover by providing long-range information, it could also solve haplotype phasing. However, existing long-read technologies still have several limitations that complicate their use for most research laboratories, as well as in large and/or complex genome projects. In 2014, Oxford Nanopore released the MinION® device, a small and low-cost single-molecule nanopore sequencer, which offers the possibility of sequencing long DNA fragments.

Results

The assembly of long reads generated using the Oxford Nanopore MinION® instrument is challenging as existing assemblers were not implemented to deal with long reads exhibiting close to 30% of errors. Here, we presented a hybrid approach developed to take advantage of data generated using MinION® device. We sequenced a well-known bacterium, Acinetobacter baylyi ADP1 and applied our method to obtain a highly contiguous (one single contig) and accurate genome assembly even in repetitive regions, in contrast to an Illumina-only assembly. Our hybrid strategy was able to generate NaS (Nanopore Synthetic-long) reads up to 60 kb that aligned entirely and with no error to the reference genome and that spanned highly conserved repetitive regions. The average accuracy of NaS reads reached 99.99% without losing the initial size of the input MinION® reads.

Conclusions

We described NaS tool, a hybrid approach allowing the sequencing of microbial genomes using the MinION® device. Our method, based ideally on 20x and 50x of NaS and Illumina reads respectively, provides an efficient and cost-effective way of sequencing microbial or small eukaryotic genomes in a very short time even in small facilities. Moreover, we demonstrated that although the Oxford Nanopore technology is a relatively new sequencing technology, currently with a high error rate, it is already useful in the generation of high-quality genome assemblies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1519-z) contains supplementary material, which is available to authorized users.  相似文献   
172.
173.
174.
BACKGROUND: and Aims Response to density is a crucial aspect of the ecology of trees in forests and plantations. Few studies have investigated the genetics of plasticity in response to density for growth traits such as height and circumference through development. METHODS: Two experiments were carried out in the field, the first with full-sib families of Eucalyptus urophylla x E. grandis hybrids, and the second with clones of E. tereticornis x E. grandis hybrids planted across a range of densities (625, 1111 and 2500 trees ha-1). Height, circumference and stem taper were measured through development in both experiments. Variance components were estimated and a repeated measure approach for plasticity and three different methods were used to compare the variance-covariance matrix across densities. KEY RESULTS: Genetic variance was significantly different from zero but the density x genotype interaction was significant only for clone experiments at the adult stage. Significant plasticity for three traits in both experiments was found. In the clone experiments, a significant clone x time x density interaction was found, suggesting that plasticity for growth and stem form is under genetic control. In both experiments, density did not affect environmental correlation, which remained high throughout tree development. The impact of density on genetic correlation was marked in the clone experiment, with a reduced value at lower density, but was not observed in the family trial. The differences between clones and family are mainly explained by the distribution of genetic variation within and among genotypes. CONCLUSIONS: The results suggest that plasticity for growth traits and form of tropical Eucalyptus species is under genetic control and that the environment changes genetic co-variation through ontogeny. The findings confirm that a tree population with a narrow genetic basis (represented by clones) is sensitive to a changing environment, whereas a population with a broader genetic basis (full-sib family here) exhibits a more stable reaction.  相似文献   
175.
176.
FK-506, a widely used immunosuppressant, has caused a few clinical cases with QT prolongation and torsades de pointe at high blood concentration. The proarrhytmogenic potential of FK-506 was investigated in single rat ventricular cells using the whole cell clamp method to record action potentials (APs) and ionic currents. Fluorescence measurements of Ca2+ transients were performed with indo-1 AM using a multiphotonic microscope. FK-506 (25 micromol/l) hyperpolarized the resting membrane potential (RMP; -3 mV) and prolonged APs (AP duration at 90% repolarization increased by 21%) at 0.1 Hz. Prolongation was enhanced by threefold at 3.3 Hz, and early afterdepolarizations (EADs) occurred in 59% of cells. EADs were prevented by stronger intracellular Ca2+ buffering (EGTA: 10 vs. 0.5 mmol/l in the patch pipette) or replacement of extracellular Na+ by Li+, which abolishes Na+/Ca2+ exchange [Na+/Ca2+ exchanger current (INaCa)]. In indo-1-loaded cells, FK-506 generated doublets of Ca(2+) transients associated with increased diastolic Ca2+ in one-half of the cells. FK-506 reversibly decreased the L-type Ca2+ current (ICaL) by 25%, although high-frequency-dependent facilitation of ICaL persisted, and decreased three distinct K+ currents: delayed rectifier K+ current (IK; >80%), transient outward K+ current (<20%), and inward rectifier K+ current (IK1; >40%). A shift in the reversal potential of IK1 (-5 mV) accounted for RMP hyperpolarization. Numerical simulations, reproducing all experimental effects of FK-506, and the use of nifedipine showed that frequency-dependent facilitation of ICaL plays a role in the occurrence of EADs. In conclusion, the effects of FK-506 on the cardiac AP are more complex than previously reported and include inhibitions of IK1 and ICaL. Alterations in Ca2+ release and INaCa may contribute to FK-506-induced AP prolongation and EADs in addition to the permissive role of ICaL facilitation at high rates of stimulation.  相似文献   
177.
We report the successful infection of the cell line ISE6 derived from Ixodes scapularis tick embryos by the tick-borne Hazara virus (HAZV), a nairovirus in the family Bunyaviridae. Using a recombinant Semliki Forest alphavirus replicon that replicates in these cells, we were able to inhibit replication of HAZV, and we showed that this blockage is mediated by the replication of the Semliki Forest alphavirus replicon; the vector containing the HAZV nucleoprotein gene in sense or antisense orientation efficiently inhibited HAZV replication. Moreover, expression of a distantly related nucleoprotein gene from Crimean-Congo hemorrhagic fever nairovirus failed to induce HAZV silencing, indicating that the inhibition is sequence specific. The resistance of these cells to replicate HAZV correlated with the detection of specific RNase activity and 21- to 24-nucleotide-long small interfering RNAs. Altogether, these results strongly suggest that pathogen-derived resistance can be established in the tick cells via a mechanism of RNA interference.  相似文献   
178.
Proline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound gamma-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane. Expression in a yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of all three AtProTs was highest for glycine betaine (K(m) = 0.1-0.3 mM), lower for Pro (K(m) = 0.4-1 mM), and lowest for gamma-aminobutyric acid (K(m) = 4-5 mM). Relative quantification of the mRNA level using real-time PCR and analyses of transgenic plants expressing the beta-glucuronidase (uidA) gene under control of individual AtProT promoters showed that the expression pattern of AtProTs are complementary. AtProT1 expression was found in the phloem or phloem parenchyma cells throughout the whole plant, indicative of a role in long-distance transport of compatible solutes. beta-Glucuronidase activity under the control of the AtProT2 promoter was restricted to the epidermis and the cortex cells in roots, whereas in leaves, staining could be demonstrated only after wounding. In contrast, AtProT3 expression was restricted to the above-ground parts of the plant and could be localized to the epidermal cells in leaves. These results showed that, although intracellular localization, substrate specificity, and affinity are very similar, the transporters fulfill different roles in planta.  相似文献   
179.
Mitotic remodeling of the replicon and chromosome structure   总被引:8,自引:0,他引:8  
Lemaitre JM  Danis E  Pasero P  Vassetzky Y  Méchali M 《Cell》2005,123(5):787-801
Animal cloning by nuclear-transfer experiments frequently fails due to the inability of transplanted nuclei to support normal embryonic development. We show here that the formation of mitotic chromosomes in the egg context is crucial for adapting differentiated nuclei for early development. Differentiated erythrocyte nuclei replicate inefficiently in Xenopus eggs but do so as rapidly as sperm nuclei if a prior single mitosis is permitted. This mitotic remodeling involves a topoisomerase II-dependent shortening of chromatin loop domains and an increased recruitment of replication initiation factors onto chromatin, leading to a short interorigin spacing characteristic of early developmental stages. It also occurs within each early embryonic cell cycle and dominantly regulates initiation of DNA replication for the subsequent S phase. These results indicate that mitotic conditioning is crucial to reset the chromatin structure of differentiated adult donor cells for embryonic DNA replication and suggest that it is an important step in nuclear cloning.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号